
CFD General Notation System

Mid-Level Library

Document Version 3.1.8

CGNS Version 3.1.3

Contents

1 Introduction 1

2 General Remarks 3
2.1 Acquiring the Software and Documentation . 3
2.2 Organization of This Manual . 3
2.3 Language . 3
2.4 Character Strings . 3
2.5 Error Status . 3
2.6 Typedefs . 4
2.7 Character Names For Typedefs . 6
2.8 64-bit C Portability and Issues . 8
2.9 64-bit Fortran Portability and Issues . 8

3 File Operations 11
3.1 Opening and Closing a CGNS File . 11
3.2 Configuring CGNS Internals . 13

4 Navigating a CGNS File 15
4.1 Accessing a Node . 15
4.2 Deleting a Node . 17

5 Error Handling 19

6 Structural Nodes 21
6.1 CGNS Base Information . 21
6.2 Zone Information . 22
6.3 Simulation Type . 23

7 Descriptors 25
7.1 Descriptive Text . 25
7.2 Ordinal Value . 25

8 Physical Data 27
8.1 Data Arrays . 27
8.2 Data Class . 28
8.3 Data Conversion Factors . 28
8.4 Dimensional Units . 29
8.5 Dimensional Exponents . 31

9 Location and Position 33
9.1 Grid Location . 33
9.2 Point Sets . 33
9.3 Rind Layers . 34

10 Auxiliary Data 35
10.1 Reference State . 35
10.2 Gravity . 35
10.3 Convergence History . 36
10.4 Integral Data . 36
10.5 User-Defined Data . 37

iii

10.6 Freeing Memory . 37

11 Grid Specification 39
11.1 Zone Grid Coordinates . 39
11.2 Element Connectivity . 42
11.3 Axisymmetry . 44
11.4 Rotating Coordinates . 45

12 Solution Data 47
12.1 Flow Solution . 47
12.2 Flow Solution Data . 49
12.3 Discrete Data . 51
12.4 Zone Subregions . 53

13 Grid Connectivity 55
13.1 One-to-One Connectivity . 55
13.2 Generalized Connectivity . 57
13.3 Special Grid Connectivity Properties . 60
13.4 Overset Holes . 62

14 Boundary Conditions 65
14.1 Boundary Condition Type and Location . 65
14.2 Boundary Condition Datasets . 67
14.3 Boundary Condition Data . 69
14.4 Special Boundary Condition Properties . 70

15 Equation Specification 71
15.1 Flow Equation Set . 71
15.2 Governing Equations . 72
15.3 Auxiliary Models . 73

16 Families 75
16.1 Family Definition . 75
16.2 Geometry Reference . 76
16.3 Family Boundary Condition . 77
16.4 Family Name . 77

17 Time-Dependent Data 79
17.1 Base Iterative Data . 79
17.2 Zone Iterative Data . 79
17.3 Rigid Grid Motion . 80
17.4 Arbitrary Grid Motion . 81
17.5 Zone Grid Connectivity . 82

18 Links 83

iv

1 Introduction

This document outlines a CGNS library designed to ease implementation of CGNS by providing
developers with a collection of handy I/O functions. Since knowledge of database manager and file
structure is not required to use this library, it greatly facilitates the task of interfacing with CGNS.

The CGNS Mid-Level Library is based on the SIDS File Mapping Manual. It allows reading and
writing all of the information described in that manual including grid coordinates, block interfaces,
flow solutions, and boundary conditions. Use of the mid-level library functions insures efficient
communication between the user application and the internal representation of the CGNS data.

It is assumed that the reader is familiar with the information in the CGNS Standard Interface
Data Structures (SIDS), as well as the SIDS File Mapping Manual. The reader is also strongly
encouraged to read the User’s Guide to CGNS, which contains coding examples using the Mid-Level
Library to write and read simple files containing CGNS databases.

1

2 General Remarks

2.1 Acquiring the Software and Documentation

The CGNS Mid-Level Library may be downloaded from SourceForge, at http:// sourceforge.net/
projects/ cgns. This manual, as well as the other CGNS documentation, is available in both HTML
and PDF format from the CGNS documentation web site, at http://www.grc.nasa.gov/www/ cgns/
CGNS docs current/ .

2.2 Organization of This Manual

The sections that follow describe the Mid-Level Library functions in detail. The first three sec-
tions cover some basic file operations (i.e., opening and closing a CGNS file, and some configuration
options) (Section 3), accessing a specific node in a CGNS database (Section 4), and error handling
(Section 5). The remaining sections describe the functions used to read, write, and modify nodes
and data in a CGNS database. These sections basically follow the organization used in the “Detailed
CGNS Node Descriptions” section of the SIDS File Mapping manual.

At the start of each sub-section is a Node line, listing the the applicable CGNS node label.

Next is a table illustrating the syntax for the Mid-Level Library functions. The C functions are
shown in the top half of the table, followed by the corresponding Fortran routines in the bottom half
of the table. Input variables are shown in an upright blue font, and output variables are shown
in a slanted red font. As of Version 3.1, some of the arguments to the Mid-Level Library have
changed from int to cgsize_t in order to support 64-bit data. For each function, the right-hand
column lists the modes (read, write, and/or modify) applicable to that function.

The input and output variables are then listed and defined.

2.3 Language

The CGNS Mid-Level Library is written in C, but each function has a Fortran counterpart. All
function names start with “cg_”. The Fortran functions have the same name as their C counterpart
with the addition of the suffix “_f”.

2.4 Character Strings

All data structure names and labels in CGNS are limited to 32 characters. When reading a file,
it is advised to pre-allocate the character string variables to 32 characters in Fortran, and 33 in C (to
include the string terminator). Other character strings, such as the CGNS file name or descriptor
text, are unlimited in length. The space for unlimited length character strings will be created by
the Mid-Level Library; it is then the responsibility of the application to release this space by a call
to cg_free, described in Section 10.6.

2.5 Error Status

All C functions return an integer value representing the error status. All Fortran functions have
an additional parameter, ier, which contains the value of the error status. An error status different

3

http://sourceforge.net/projects/cgns
http://sourceforge.net/projects/cgns
http://www.grc.nasa.gov/www/cgns/CGNS_docs_current/
http://www.grc.nasa.gov/www/cgns/CGNS_docs_current/

Mid-Level Library

from zero implies that an error occured. The error message can be printed using the error handling
functions of the CGNS library, described in Section 5. The error codes are coded in the C and
Fortran include files cgnslib.h and cgnslib f.h.

2.6 Typedefs

Beginning with version 3.1, two new typedef variables have been introduced to support 64-bit
mode. The cglong_t typedef is always a 64-bit integer, and cgsize_t will be either a 32-bit or
64-bit integer depending on how the library was built. Many of the C functions in the MLL have
been changed to to use cgsize_t instead of int in the arguments. These functions include any that
may exceed the 2Gb limit of an int, e.g. zone dimensions, element data, boundary conditions, and
connectivity. In Fortran, all integer data is taken to be integer*4 for 32-bit and integer*8 for
64-bit builds.

Several types of variables are defined using typedefs in the cgnslib.h file. These are intended to
facilitate the implementation of CGNS in C. These variable types are defined as an enumeration of
key words admissible for any variable of these types. The file cgnslib.h must be included in any C
application programs which use these data types.

In Fortran, the same key words are defined as integer parameters in the include file cgnslib f.h.
Such variables should be declared as integer in Fortran applications. The file cgnslib f.h must be
included in any Fortran application using these key words.

Note that the first two enumerated values in these lists, xxxNull and xxxUserDefined, are only
available in the C interface, and are provided in the advent that your C compiler does strict
type checking. In Fortran, these values are replaced by the numerically equivalent CG_Null and
CG_UserDefined. These values are also defined in the C interface, thus either form may be used.
The function prototypes for the MLL use CG_Null and CG_UserDefined, rather than the more
specific values.

The list of enumerated values (key words) for each of these variable types (typedefs) are:

ZoneType_t ZoneTypeNull, ZoneTypeUserDefined, Structured,
Unstructured

ElementType_t ElementTypeNull, ElementTypeUserDefined, NODE, BAR_2,
BAR_3, TRI_3, TRI_6, QUAD_4, QUAD_8, QUAD_9, TETRA_4,
TETRA_10, PYRA_5, PYRA_14, PENTA_6, PENTA_15, PENTA_18,
HEXA_8, HEXA_20, HEXA_27, MIXED, PYRA_13, NGON_n,
NFACE_n

DataType_t DataTypeNull, DataTypeUserDefined, Integer, RealSingle,
RealDouble, Character

DataClass_t DataClassNull, DataClassUserDefined, Dimensional,
NormalizedByDimensional,
NormalizedByUnknownDimensional,
NondimensionalParameter, DimensionlessConstant

MassUnits_t MassUnitsNull, MassUnitsNullUserDefined, Kilogram,
Gram, Slug, PoundMass

LengthUnits_t LengthUnitsNull, LengthUnitsUserDefined, Meter,
Centimeter, Millimeter, Foot, Inch

4

2 General Remarks

TimeUnits_t TimeUnitsNull, TimeUnitsUserDefined, Second

TemperatureUnits_t TemperatureUnitsNull, TemperatureUnitsUserDefined,
Kelvin, Celsius, Rankine, Fahrenheit

AngleUnits_t AngleUnitsNull, AngleUnitsUserDefined, Degree, Radian

ElectricCurrentUnits_t ElectricCurrentUnitsNull,
ElectricCurrentUnitsUserDefined, Ampere, Abampere,
Statampere, Edison, auCurrent

SubstanceAmountUnits_t SubstanceAmountUnitsNull,
SubstanceAmountUnitsUserDefined, Mole, Entities,
StandardCubicFoot, StandardCubicMeter

LuminousIntensityUnits_t
LuminousIntensityUnitsNull,
LuminousIntensityUnitsUserDefined, Candela, Candle,
Carcel, Hefner, Violle

GoverningEquationsType_t
GoverningEquationsTypeNull,
GoverningEquationsTypeUserDefined, FullPotential,
Euler, NSLaminar, NSTurbulent, NSLaminarIncompressible,
NSTurbulentIncompressible

ModelType_t ModelTypeNull, ModelTypeUserDefined, Ideal,
VanderWaals, Constant, PowerLaw, SutherlandLaw,
ConstantPrandtl, EddyViscosity, ReynoldsStress,
ReynoldsStressAlgebraic, Algebraic_BaldwinLomax,
Algebraic_CebeciSmith, HalfEquation_JohnsonKing,
OneEquation_BaldwinBarth, OneEquation_SpalartAllmaras,
TwoEquation_JonesLaunder, TwoEquation_MenterSST,
TwoEquation_Wilcox, CaloricallyPerfect,
ThermallyPerfect, ConstantDensity, RedlichKwong,
Frozen, ThermalEquilib, ThermalNonequilib,
ChemicalEquilibCurveFit, ChemicalEquilibMinimization,
ChemicalNonequilib, EMElectricField, EMMagneticField,
EMConductivity, Voltage, Interpolated,
Equilibrium_LinRessler, Chemistry_LinRessler

GridLocation_t GridLocationNull, GridLocationUserDefined, Vertex,
IFaceCenter, CellCenter, JFaceCenter, FaceCenter,
KFaceCenter, EdgeCenter

GridConnectivityType_t GridConnectivityTypeNull,
GridConnectivityTypeUserDefined, Overset, Abutting,
Abutting1to1

PointSetType_t PointSetTypeNull, PointSetTypeUserDefined, PointList,
PointRange, PointListDonor, PointRangeDonor,
ElementList, ElementRange, CellListDonor

BCType_t BCTypeNull, BCTypeUserDefined, BCAxisymmetricWedge,
BCDegenerateLine, BCExtrapolate, BCDegeneratePoint,

5

Mid-Level Library

BCDirichlet, BCFarfield, BCNeumann, BCGeneral,
BCInflow, BCOutflow, BCInflowSubsonic,
BCOutflowSubsonic, BCInflowSupersonic,
BCOutflowSupersonic, BCSymmetryPlane, BCTunnelInflow,
BCSymmetryPolar, BCTunnelOutflow, BCWallViscous,
BCWall, BCWallViscousHeatFlux, BCWallInviscid,
BCWallViscousIsothermal, FamilySpecified

BCDataType_t BCDataTypeNull, BCDataTypeUserDefined, Dirichlet,
Neumann

RigidGridMotionType_t RigidGridMotionTypeNull,
RigidGridMotionTypeUserDefined, ConstantRate,
VariableRate

ArbitraryGridMotionType_t
ArbitraryGridMotionTypeNull,
ArbitraryGridMotionTypeUserDefined, NonDeformingGrid,
DeformingGrid

SimulationType_t SimulationTypeNull, SimulationTypeUserDefined,
TimeAccurate, NonTimeAccurate

WallFunctionType_t WallFunctionTypeNull, WallFunctionTypeUserDefined,
Generic

AreaType_t AreaTypeNull, AreaTypeUserDefined, BleedArea,
CaptureArea

AverageInterfaceType_t AverageInterfaceTypeNull,
AverageInterfaceTypeUserDefined, AverageAll,
AverageCircumferential, AverageRadial, AverageI,
AverageJ, AverageK

2.7 Character Names For Typedefs

The CGNS library defines character arrays which map the typedefs above to character strings.
These are global arrays dimensioned to the size of each list of typedefs. To retrieve a character string
representation of a typedef, use the typedef value as an index to the appropiate character array. For
example, to retrieve the string “Meter” for the LengthUnits_t Meter typedef, use LengthUnit-
sName[Meter]. Functions are available to retrieve these names without the need for direct global
data access. These functions also do bounds checking on the input, and if out of range, will return
the string “<invalid>”. An additional benefit is that these will work from within a Windows DLL,
and are thus the recommended access technique. The routines have the same name as the global data
arrays, but with a “cg_” prepended. For the example above, use “cg_LengthUnitsName(Meter)”.

6

2 General Remarks

Typedef Name Access Functions
const char *name = cg MassUnitsName(MassUnits t type);
const char *name = cg LengthUnitsName(LengthUnits t type);
const char *name = cg TimeUnitsName(TimeUnits t type);
const char *name = cg TemperatureUnitsName(TemperatureUnits t type);
const char *name = cg ElectricCurrentUnitsName(ElectricCurrentUnits t type);
const char *name = cg SubstanceAmountUnitsName(SubstanceAmountUnits t type);
const char *name = cg LuminousIntensityUnitsName(LuminousIntensityUnits t type);
const char *name = cg DataClassName(DataClass t type);
const char *name = cg GridLocationName(GridLocation t type);
const char *name = cg BCDataTypeName(BCDataType t type);
const char *name = cg GridConnectivityTypeName(GridConnectivityType t type);
const char *name = cg PointSetTypeName(PointSetType t type);
const char *name = cg GoverningEquationsTypeName(GoverningEquationsType t type);
const char *name = cg ModelTypeName(ModelType t type);
const char *name = cg BCTypeName(BCType t type);
const char *name = cg DataTypeName(DataType t type);
const char *name = cg ElementTypeName(ElementType t type);
const char *name = cg ZoneTypeName(ZoneType t type);
const char *name = cg RigidGridMotionTypeName(RigidGridMotionType t type);
const char *name = cg ArbitraryGridMotionTypeName(ArbitraryGridMotionType t type);
const char *name = cg SimulationTypeName(SimulationType t type);
const char *name = cg WallFunctionTypeName(WallFunctionType t type);
const char *name = cg AreaTypeName(AreaType t type);
const char *name = cg AverageInterfaceTypeName(AverageInterfaceType t type);

7

Mid-Level Library

2.8 64-bit C Portability and Issues

If you use the cgsize_t data type in new code, it will work in both 32 and 64-bit compilation
modes. In order to support CGNS versions prior to 3.1, you may also want to add something like
this to your code:

#if CGNS_VERSION < 3100
#define cgsize_t int
#endif

Existing code that uses int will not work with a CGNS 3.1 library compiled in 64-bit mode. You
may want to add something like this to your code:

#if CGNS_VERSION >= 3100 && CG_BUILD_64BIT
#error does not work in 64 bit mode
#endif

or modify your code to use cgsize_t.

2.9 64-bit Fortran Portability and Issues

All integer arguments in the Fortran interface are taken to be integer*4 in 32-bit mode and
integer*8 in 64-bit mode. If you have used default or implicit integers in your Fortran code, it
should port to 64-bit mode in most cases by simply turning on your compiler option that promotes
implicit integers to integer*8. If you have explicitly defined your integers as integer*4, your
code will not work in 64-bit mode. In that case, you will either need to change them to integer
(recommended for portability) or integer*8.

A new integer parameter has been added to the cgnslib f.h header, CG_BUILD_64BIT, which will
be set to 1 in 64-bit mode and 0 otherwise. You may use this parameter to check at run time if the
CGNS library has been compiled in 64-bit mode or not, as in:

if (CG_BUILD_64BIT .ne. 0) then
print ,’will not work in 64-bit mode’
stop

endif

If you are using a CGNS library prior to version 3.1, this parameter will not be defined and you
will need to rely on your compiler initializing all undefined values to 0 (not always the case) for this
test to work.

If your compiler supports automatic promotion of integers, and you use implicit integers, your
code should port to 64-bit with the following exception.

If you use an Integer data type in any routine that takes a data type specification, and an
implicit integer for the data, the code will fail when compiled in 64-bit mode with automatic integer
promotion. An example of this would be:

integer dim
integer data(dim)
call cg_array_write_f(’array’,Integer,1,dim,data)

This is because the MLL interprets the Integer data type as integer*4 regardless of the com-
pilation mode. The compiler, however, has automatically promoted data to be integer*8. What

8

2 General Remarks

you will need to do to prevent this problem, is to either explicitly define data as in:

integer dim
integer*4 data(dim)
call cg_array_write_f(’array’,Integer,1,dim,data)

or

integer dim
integer*8 data(dim)
call cg_array_write_f(’array’,LongInteger,1,dim,data)

or test on CG_BUILD_64BIT as in:

integer dim
integer data(dim)
if (CG_BUILD_64BIT .eq. 0) then

call cg_array_write_f(’array’,Integer,1,dim,data)
else

call cg_array_write_f(’array’,LongInteger,1,dim,data)
endif

The last 2 options will only work with CGNS Version 3.1, since LongInteger and CG_BUILD_64BIT
are not defined in previous versions.

You may also need to be careful when using integer constants as arguments in 64-bit mode. If
your compiler automatically promotes integer constants to integer*8, then there is no problem.
This is probably the case if your compiler supports implicit integer promotion. If not, then the
constants will be integer*4, and your code will not work in 64-bit mode. In that case you will need
to do something like:

integer*8 one,dim
integer*4 data(dim)
one = 1
call cg_array_write_f(’array’,Integer,one,dim,data)

9

3 File Operations

3.1 Opening and Closing a CGNS File

Functions Modes
ier = cg_open(char *filename, int mode, int *fn); r w m

ier = cg_version(int fn, float *version); r w m

ier = cg_close(int fn); r w m

ier = cg_is_cgns(const char *filename, int *file_type); r w m

ier = cg_save_as(int fn, const char *filename, int file_type, r w m

int follow_links);

ier = cg_set_file_type(int file_type); r w m

ier = cg_get_file_type(int fn, int *file_type); r w m

call cg_open_f(filename, mode, fn , ier) r w m

call cg_version_f(fn, version , ier) r w m

call cg_close_f(fn, ier) r w m

call cg_is_cgns_f(filename, file_type , ier) r w m

call cg_save_as_f(fn, filename, file_type, follow_links, ier) r w m

call cg_set_file_type_f(file_type, ier) r w m

call cg_get_file_type_f(fn, file_type , ier) r w m

Input/Output

filename Name of the CGNS file, including path name if necessary. There is no limit
on the length of this character variable. (Input)

mode Mode used for opening the file. The modes currently supported are
CG_MODE_READ, CG_MODE_WRITE, and CG_MODE_MODIFY. (Input)

fn CGNS file index number. (Input for cg_version and cg_close; output for
cg_open)

version CGNS version number. (Output)

file_type Type of CGNS file. This will typically be either CG_FILE_ADF or
CG_FILE_HDF5 depending on the underlying file format. (Input for
cg_save_as and cg_set_file_type; output for cg_get_file_type)
However, note that when built in 32-bit, there is also an option to create a
Version 2.5 CGNS file by setting the file type to CG_FILE_ADF2.

follow_links This flag determines whether links are left intact when saving a CGNS file. If
non-zero, then the links will be removed and the data associated with the
linked files copied to the new file. (Input)

ier Error status. (Output)

The function cg_open must always be the first one called. It opens a CGNS file for reading
and/or writing and returns an index number fn. The index number serves to identify the CGNS file

11

Mid-Level Library

in subsequent function calls. Several CGNS files can be opened simultaneously. The current limit
on the number of files opened at once depends on the platform. On an SGI workstation, this limit
is set at 100 (parameter FOPEN_MAX in stdio.h).

The file can be opened in one of the following modes:

CG_MODE_READ Read only mode.
CG_MODE_WRITE Write only mode.
CG_MODE_MODIFY Reading and/or writing is allowed.

When the file is opened, if no CGNSLibraryVersion_t node is found, a default value of 1.05 is
assumed for the CGNS version number. Note that this corresponds to an old version of the CGNS
standard, that doesn’t include many data structures supported by the current standard.

The function cg_close must always be the last one called. It closes the CGNS file designated
by the index number fn and frees the memory where the CGNS data was kept. When a file is
opened for writing, cg_close writes all the CGNS data in memory onto disk prior to closing the
file. Consequently, if is omitted, the CGNS file is not written properly.

In order to reduce memory usage and improve execution speed, large arrays such as grid coordi-
nates or flow solutions are not actually stored in memory. Instead, only basic information about the
node is kept, while reads and writes of the data is directly to and from the application’s memory.
An attempt is also made to do the same with unstructured mesh element data.

The function cg_is_cgns may be used to determine if a file is a CGNS file or not, and the
type of file (CG_FILE_ADF or CG_FILE_HDF5). If the file is a CGNS file, cg_is_cgns returns CG_OK,
otherwise CG_ERROR is returned and file_type is set to CG_FILE_NONE.

The CGNS file identified by fn may be saved to a different filename and type using cg_save_as.
In order to save as an HDF5 file, the library must have been built with HDF5 support. ADF support
is always built. The function cg_set_file_type sets the default file type for newly created CGNS
files. The function cg_get_file_type returns the file type for the CGNS file identified by fn. If
the CGNS library is built as 32-bit, the additional file type, CG_FILE_ADF2, is available. This allows
creation of a 2.5 compatible CGNS file.

12

3 File Operations

3.2 Configuring CGNS Internals

Functions Modes
ier = cg_configure(int option, void *value); r w m

ier = cg_error_handler(void (*)(int, char *)); r w m

ier = cg_set_compress(int compress); r w m

ier = cg_get_compress(int *compress); r w m

ier = cg_set_path(const char *path); r w m

ier = cg_add_path(const char *path); r w m

call cg_set_compress_f(compress, ier) r w m

call cg_get_compress_f(compress , ier) r w m

call cg_set_path_f(path, ier) r w m

call cg_add_path_f(path, ier) r w m

Input/Output

option The option to configure, currently one of CG_CONFIG_ERROR, CG_CONFIG_COMPRESS,
CG_CONFIG_SET_PATH, CG_CONFIG_ADD_PATH, or CG_CONFIG_HDF5_COMPRESS as
defined in cgnslib.h. (Input)

value The value to set, type cast as void *. (Input)

compress
CGNS compress (rewrite) setting). (Input for cg_set_compress; output for
cg_get_compress)

path Pathname to search for linked to files when opening a file with external links. (Input)

ier Error status. (Output)

The function cg_configure allows certain CGNS library internal options to be configured. The
currently supported options and expected values are:

CG_CONFIG_ERROR This allows an error call-back function to be defined by the user. The
value should be a pointer to a function to receive the error. The
function is defined as void err_callback(int is_error, char *er-
rmsg), and will be called for errors and warnings. The first argument,
is_error, will be 0 for warning messages, 1 for error messages, and −1
if the program is going to terminate (i.e., a call to cg_error_exit()).
The second argument is the error or warning message. If this is defined,
warning and error messages will go to the function, rather than the
terminal. A value of NULL will remove the call-back function.

CG_CONFIG_COMPRESS When a CGNS file is closed after being opened in modify mode, the
normal operation of the CGNS library is to rewrite the file if there is
unused space. This happens when nodes have been rewritten or deleted.
Setting value to 0 will prevent the library from rewriting the file, and
setting it to 1 will force the rewrite. The default value is −1.

13

Mid-Level Library

CG_CONFIG_SET_PATH Sets the search path for locating linked-to files. The argument value
should be a character string containing one or more directories, format-
ted the same as for the PATH environment variable. This will replace
any current settings. Setting value to NULL will remove all paths.

CG_CONFIG_ADD_PATH Adds a directory, or list of directories, to the linked-to file search path.
This is the same as CG_CONFIG_SET_PATH, but adds to the path instead
of replacing it.

CG_CONFIG_HDF5_COMPRESS
Sets the compression level for data written from HDF5. The default is
no compression. Setting value to −1, will use the default compression
level of 6. The acceptable values are 0 to 9, corresponding to gzip
compression levels.

The routines cg_error_handler, cg_set_compress, cg_set_path, and cg_add_path are conve-
nience functions built on top of cg_configure.

There is no Fortran counterpart to function cg_configure or cg_error_handler.

Note: The HDF5 implementation does not support search paths for linked files. The links need
to be either absolute or relative pathnames. As a result, it is recommended that the search path
options not be used as they may be removed in future versions.

14

4 Navigating a CGNS File

4.1 Accessing a Node

Functions Modes
ier = cg_goto(int fn, int B, ..., "end"); r w m

ier = cg_gorel(int fn, ..., "end"); r w m

ier = cg_gopath(int fn, const char *path); r w m

ier = cg_golist(int fn, int B, int depth, char **label, int *index); r w m

ier = cg_gowhere(int *fn, int *B, int *depth , char **label , r w m

int *index);

call cg_goto_f(fn, B, ier , ..., ’end’) r w m

call cg_gorel_f(fn, ier , ..., ’end’) r w m

call cg_gopath_f(fn, path, ier) r w m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

... Variable argument list used to specify the path to a node. It is composed of an
unlimited list of pair-arguments identifying each node in the path. Nodes may be
identified by their label or name. Thus, a pair-argument may be of the form

"CGNS_NodeLabel", NodeIndex

where CGNS_NodeLabel is the node label and NodeIndex is the node index, or

"CGNS_NodeName", 0

where CGNS_NodeName is the node name. The 0 in the second form is required, to
indicate that a node name is being specified rather than a node label. In addition, a
pair-argument may be specified as

"..", 0

indicating the parent of the current node. The different pair-argument forms may be
intermixed in the same function call.

There is one exception to this rule. When accessing a BCData_t node, the index must
be set to either Dirichlet or Neumann since only these two types are allowed. (Note
that Dirichlet and Neumann are defined in the include files cgnslib.h and cgnslib f.h).
Since ”Dirichlet” and ”Neuman” are also the names for these nodes, you may also use
the "Dirichlet", 0 or "Neuman", 0 to access the node. See the example below.
(Input)

end The character string "end" (or ’end’ for the Fortran function) must be the last
argument. It is used to indicate the end of the argument list. You may also use the
empty string, "" (’’ for Fortran), or the NULL string in C, to terminate the list.
(Input)

15

Mid-Level Library

path The pathname for the node to go to. If a position has been already set, this may be a
relative path, otherwise it is an absolute path name, starting with "/Basename",
where Basename is the base under which you wish to move. (Input)

depth Depth of the path list. The maximum depth is defined in cgnslib.h by
CG_MAX_GOTO_DEPTH, and is currently equal to 20. (Input for cg_golist; output for
cg_gowhere)

label Array of node labels for the path. This argument may be passed as NULL to
cg_where(), otherwise it must be dimensioned by the calling program. The maximum
size required is label[MAX_GO_TO_DEPTH][33]. You may call cg_where() with both
label and index set to NULL in order to get the current depth, then dimension to
that value. (Input for cg_golist; output for cg_gowhere)

index Array of node indices for the path. This argument may be passed as NULL to
cg_where(), otherwise it must be dimensioned by the calling program. The maximum
size required is index[MAX_GO_TO_DEPTH]. You may call cg_where() with both label
and index set to NULL in order to get the current depth, then dimension to that value.
(Input for cg_golist; output for cg_gowhere)

ier Error status. The possible values, with the corresponding C names (or Fortran
parameters) defined in cgnslib.h (or cgnslib f.h) are listed below.

Value Name/Parameter
0 CG_OK

1 CG_ERROR

2 CG_NODE_NOT_FOUND

3 CG_INCORRECT_PATH

For non-zero values, an error message may be printed using cg_error_print(), as
described in Section 5. (Output)

This function allows access to any parent-type nodes in a CGNS file. A parent-type node is one
that can have children. Nodes that cannot have children, like Descriptor_t, are not supported by
this function.

Examples

To illustrate the use of the above routines, assume you have a file with CGNS index number
filenum, a base node named Base with index number basenum, 2 zones (named Zone1 and Zone2,
with indices 1 and 2), and user-defined data (User, index 1) below each zone. To move to the
user-defined data node under zone 1, you may use any of the following:

cg_goto(filenum, basenum, "Zone_t", 1, "UserDefinedData_t", 1, NULL);
cg_goto(filenum, basenum "Zone1", 0, "UserDefinedData_t", 1, NULL);
cg_goto(filenum, basenum, "Zone_t", 1, "User", 0, NULL);
cg_goto(filenum, basenum, "Zone1", 0, "User", 0, NULL);
cg_gopath(filenum, "/Base/Zone1/User");

Now, to change to the user-defined data node under zone 2, you may use the full path specification
as above, or else a relative path, using one of the following:

cg_gorel(filenum, "..", 0, "..", 0, "Zone_t", 2, "UserDefinedData_t", 1, NULL);

16

4 Navigating a CGNS File

cg_gorel(filenum, "..", 0, "..", 0, "Zone2", 0, "UserDefinedData_t", 1, NULL);
cg_gorel(filenum, "..", 0, "..", 0, "Zone_t", 2, "User", 0, NULL);
cg_gorel(filenum, "..", 0, "..", 0, "Zone2", 0, "User", 0, NULL);
cg_gopath(filenum, "../../Zone2/User");

Shown below are some additional examples of various uses of these routines, in both C and
Fortran, where fn, B, Z, etc., are index numbers.

ier = cg_goto(fn, B, "Zone_t", Z, "FlowSolution_t", F, "..", 0, "MySolution",
0, "end");

ier = cg_gorel(fn, "..", 0, "FlowSolution_t", F, NULL);

ier = cg_gopath(fn, "/MyBase/MyZone/MySolution");

ier = cg_gopath(fn, "../../MyZoneBC");

call cg_goto_f(fn, B, ier, ’Zone_t’, Z, ’GasModel_t’, 1, ’DataArray_t’,
A, ’end’)

call cg_goto_f(fn, B, ier, ’Zone_t’, Z, ’ZoneBC_t’, 1, ’BC_t’, BC,
’BCDataSet_t’, S, ’BCData_t’, Dirichlet, ’end’)

call cg_gorel_f(fn, ier, ’..’, 0, ’Neumann’, 0, ’’)

call cg_gopath_f(fn, ’../../MyZoneBC’, ier)

4.2 Deleting a Node

Functions Modes
ier = cg_delete_node(char *NodeName); - - m

call cg_delete_node_f(NodeName, ier) - - m

Input/Output

NodeName Name of the child to be deleted. (Input)

ier Error status. (Output)

The function cg_delete_node is used is conjunction with cg_goto. Once positioned at a parent
node with cg_goto, a child of this node can be deleted with cg_delete_node. This function requires
a single argument, NodeName, which is the name of the child to be deleted.

Since the highest level that can be pointed to with cg_goto is a base node for a CGNS database
(CGNSBase_t), the highest-level nodes that can be deleted are the children of a CGNSBase_t node. In
other words, nodes located directly under the ADF (or HDF) root node (CGNSBase_t and CGNSLi-
braryVersion_t) can not be deleted with cg_delete.

A few other nodes are not allowed to be deleted from the database because these are required
nodes as defined by the SIDS, and deleting them would make the file non-CGNS compliant. These
are:

17

Mid-Level Library

• Under Zone_t: ZoneType
• Under GridConnectivity1to1_t: PointRange, PointRangeDonor, Transform
• Under OversetHoles_t: PointList and any IndexRange_t
• Under GridConnectivity_t: PointRange, PointList, CellListDonor, PointListDonor
• Under BC_t: PointList, PointRange
• Under GeometryReference_t: GeometryFile, GeometryFormat
• Under Elements_t: ElementRange, ElementConnectivity
• Under Gravity_t: GravityVector
• Under Axisymmetry_t: AxisymmetryReferencePoint, AxisymmetryAxisVector
• Under RotatingCoordinates_t: RotationCenter, RotationRateVector
• Under Periodic_t: RotationCenter, RotationAngle, Translation
• Under AverageInterface_t: AverageInterfaceType
• Under WallFunction_t: WallFunctionType
• Under Area_t: AreaType, SurfaceArea, RegionName

When a child node is deleted, both the database and the file on disk are updated to remove the
node. One must be careful not to delete a node from within a loop of that node type. For example,
if the number of zones below a CGNSBase_t node is nzones, a zone should never be deleted from
within a zone loop! By deleting a zone, the total number of zones (nzones) changes, as well as the
zone indexing. Suppose for example that nzones is 5, and that the third zone is deleted. After
calling cg_delete_node, nzones is changed to 4, and the zones originally indexed 4 and 5 are now
indexed 3 and 4.

18

5 Error Handling

Functions Modes
error_message = const char *cg_get_error(); r w m

void cg_error_exit(); r w m

void cg_error_print(); r w m

call cg_get_error_f(error_message) r w m

call cg_error_exit_f() r w m

call cg_error_print_f() r w m

If an error occurs during the execution of a CGNS library function, signified by a non-zero value
of the error status variable ier, an error message may be retrieved using the function cg_get_error.
The function cg_error_exit may then be used to print the error message and stop the execution of
the program. Alternatively, cg_error_print may be used to print the error message and continue
execution of the program.

In C, you may define a function to be called automatically in the case of a warning or error
using the cg_configure routine. The function is of the form void err_func(int is_error, char
*errmsg), and will be called whenever an error or warning occurs. The first argument, is_error,
will be 0 for warning messages, 1 for error messages, and −1 if the program is going to terminate
(i.e., a call to cg_error_exit). The second argument is the error or warning message.

19

6 Structural Nodes

6.1 CGNS Base Information

Node: CGNSBase_t

Functions Modes
ier = cg_base_write(int fn, char *basename, int cell_dim, int phys_dim, - w m

int *B);

ier = cg_nbases(int fn, int *nbases); r - m

ier = cg_base_read(int fn, int B, char *basename , int *cell_dim , r - m

int *phys_dim);

ier = cg_cell_dim(int fn, int B, int *cell_dim); r - m

call cg_base_write_f(fn, basename, cell_dim, phys_dim, B , ier) - w m

call cg_nbases_f(fn, nbases , ier) r - m

call cg_base_read_f(fn, B, basename , cell_dim , phys_dim , ier) r - m

call cg_cell_dim_f(fn, B, cell_dim , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input for cg_base_read; output for
cg_base_write)

nbases Number of bases present in the CGNS file fn. (Output)

basename Name of the base. (Input for cg_base_write; output for cg_base_read)

cell_dim Dimension of the cells; 3 for volume cells, 2 for surface cells and 1 for line cells.
(Input for cg_base_write; output for cg_base_read and cg_cell_dim)

phys_dim Number of coordinates required to define a vector in the field. (Input for
cg_base_write; output for cg_base_read)

ier Error status. (Output)

21

Mid-Level Library

6.2 Zone Information

Node: Zone_t

Functions Modes
ier = cg_zone_write(int fn, int B, char *zonename, cgsize_t *size, - w m

ZoneType_t zonetype, int *Z);

ier = cg_nzones(int fn, int B, int *nzones); r - m

ier = cg_zone_read(int fn, int B, int Z, char *zonename , r - m

cgsize_t *size);

ier = cg_zone_type(int fn, int B, int Z, ZoneType_t *zonetype); r - m

ier = cg_index_dim(int fn, int B, int Z, int *index_dim); r - m

call cg_zone_write_f(fn, B, zonename, size, zonetype, Z , ier) - w m

call cg_nzones_f(fn, B, nzones , ier) r - m

call cg_zone_read_f(fn, B, Z, zonename , size , ier) r - m

call cg_zone_type_f(fn, B, Z, zonetype , ier) r - m

call cg_index_dim_f(fn, B, Z, index_dim , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input for cg_zone_read,
cg_zone_type; output for cg_zone_write)

nzones Number of zones present in base B. (Output)

zonename Name of the zone. (Input for cg_zone_write; output for cg_zone_read)

size Number of vertices, cells, and boundary vertices in each (index)-dimension.

Note that for unstructured grids, the number of cells is the number of highest
order elements. Thus, in three dimensions it’s the number of 3-D cells, and in
two dimensions it’s the number of 2-D cells.

Also for unstructured grids, if the nodes are sorted between internal nodes and
boundary nodes, the optional parameter NBoundVertex must be set equal to the
number of boundary nodes. By default, NBoundVertex equals zero, meaning that
the nodes are unsorted.

Note that a non-zero value for NBoundVertex only applies to unstructured grids.
For structured grids, the NBoundVertex parameter always equals 0 in all
directions.

22

6 Structural Nodes

Mesh Type Size
3D structured NVertexI, NVertexJ, NVertexK

NCellI, NCellJ, NCellK
NBoundVertexI = 0, NBoundVertexJ = 0,
NBoundVertexK

2D structured NVertexI, NVertexJ
NCellI, NCellJ
NBoundVertexI = 0, NBoundVertexJ = 0

3D unstructured NVertex, NCell3D, NBoundVertex
2D unstructured NVertex, NCell2D, NBoundVertex

(Input for cg_zone_write; output for cg_zone_read)

zonetype Type of the zone. The admissible types are Structured and Unstructured.
(Input for cg_zone_write; output for cg_zone_type)

index_dim Index dimension for the zone. For Structured zones, this will be the base cell
dimension and for Unstructured zones it will be 1. (output)

ier Error status. (Output)

Note that the zones are sorted alphanumerically to insure that they can always be retrieved in
the same order (for the same model). Therefore, users must name their zones alphanumerically to
ensure proper retrieval.

6.3 Simulation Type

Node: SimulationType_t

Functions Modes
ier = cg_simulation_type_write(int fn, int B, - w m

SimulationType_t SimulationType);

ier = cg_simulation_type_read(int fn, int B, r - m

SimulationType_t SimulationType);

call cg_simulation_type_write_f(fn, B, SimulationType, ier) - w m

call cg_simulation_type_read_f(fn, B, SimulationType , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

SimulationType Type of simulation. Valid types are CG_Null, CG_UserDefined,
TimeAccurate, and NonTimeAccurate. (Input for
cg_simulation_type_write; output for cg_simulation_type_read)

ier Error status. (Output)

23

7 Descriptors

7.1 Descriptive Text

Node: Descriptor_t

Functions Modes
ier = cg_descriptor_write(char *name, char *text); - w m

ier = cg_ndescriptors(int *ndescriptors); r - m

ier = cg_descriptor_read(int D, char *name , char **text); r - m

call cg_descriptor_write_f(name, text, ier) - w m

call cg_ndescriptors_f(ndescriptors , ier) r - m

call cg_descriptor_size_f(D, size , ier) r - m

call cg_descriptor_read_f(D, name , text , ier) r - m

Input/Output

ndescriptors Number of Descriptor_t nodes under the current node. (Output)

D Descriptor index number, where 1 ≤ D ≤ ndescriptors. (Input)

name Name of the Descriptor_t node. (Input for cg_descriptor_write; output
for cg_descriptor_read)

text Description held in the Descriptor_t node. (Input for
cg_descriptor_write; output for cg_descriptor_read)

size Size of the descriptor data (Fortran interface only). (Output)

ier Error status. (Output)

Note that with cg_descriptor_read the memory for the descriptor character string, text, will
be allocated by the Mid-Level Library. The application code is responsible for releasing this memory
when it is no longer needed by calling cg_free(text), described in Section 10.6.

7.2 Ordinal Value

Node: Ordinal_t

Functions Modes
ier = cg_ordinal_write(int Ordinal); - w m

ier = cg_ordinal_read(int *Ordinal); r - m

call cg_ordinal_write_f(Ordinal, ier) - w m

call cg_ordinal_read_f(Ordinal , ier) r - m

Input/Output

Ordinal Any integer value. (Input for cg_ordinal_write; output for cg_ordinal_read)

ier Error status. (Output)

25

8 Physical Data

8.1 Data Arrays

Node: DataArray_t

Functions Modes
ier = cg_array_write(char *ArrayName, DataType_t DataType, - w m

int DataDimension, cgsize_t *DimensionVector, void *Data);

ier = cg_narrays(int *narrays); r - m

ier = cg_array_info(int A, char *ArrayName , DataType_t *DataType , r - m

int *DataDimension , cgsize_t *DimensionVector);

ier = cg_array_read(int A, void *Data); r - m

ier = cg_array_read_as(int A, DataType_t DataType, void *Data); r - m

call cg_array_write_f(ArrayName, DataType, DataDimension, - w m

DimensionVector, Data, ier)

call cg_narrays_f(narrays , ier) r - m

call cg_array_info_f(A, ArrayName , DataType , DataDimension , r - m

DimensionVector , ier)

call cg_array_read_f(A, Data , ier) r - m

call cg_array_read_as_f(A, DataType, Data , ier) r - m

Input/Output

narrays Number of DataArray_t nodes under the current node. (Output)

A Data array index, where 1 ≤ A ≤ narrays. (Input)

ArrayName Name of the DataArray_t node. (Input for cg_array_write; output for
cg_array_info)

DataType Type of data held in the DataArray_t node. The admissible types are
Integer, RealSingle, RealDouble, and Character. (Input for
cg_array_write, cg_array_read_as; output for cg_array_info)

DataDimension Number of dimensions. (Input for cg_array_write; output for
cg_array_info)

DimensionVector Number of data elements in each dimension. (Input for cg_array_write;
output for cg_array_info)

Data The data array. (Input for cg_array_write; output for cg_array_read,
cg_array_read_as)

ier Error status. (Output)

27

Mid-Level Library

8.2 Data Class

Node: DataClass_t

Functions Modes
ier = cg_dataclass_write(DataClass_t dataclass); - w m

ier = cg_dataclass_read(DataClass_t *dataclass); r - m

call cg_dataclass_write_f(dataclass, ier) - w m

call cg_dataclass_read_f(dataclass , ier) r - m

Input/Output

dataclass Data class for the nodes at this level. See below for the data classes currently
supported in CGNS. (Input for cg_dataclass_write; output for
cg_dataclass_read)

ier Error status. (Output)

The data classes currently supported in CGNS are:

Dimensional Regular dimensional data.

NormalizedByDimensional Nondimensional data that is normalized by dimensional
reference quantities.

NormalizedByUnknownDimensional All fields and reference data are nondimensional.

NondimensionalParameter Nondimensional parameters such as Mach number and
lift coefficient.

DimensionlessConstant Constant such as π.

These classes are declared within typedef DataClass_t in cgnslib.h, and as parameters in cgnslib f.h.

8.3 Data Conversion Factors

Node: DataConversion_t

Functions Modes
ier = cg_conversion_write(DataType_t DataType, - w m

void *ConversionFactors);

ier = cg_conversion_info(DataType_t *DataType); r - m

ier = cg_conversion_read(void *ConversionFactors); r - m

call cg_conversion_write_f(DataType, ConversionFactors, ier) - w m

call cg_conversion_info_f(DataType , ier) r - m

call cg_conversion_read_f(ConversionFactors , ier) r - m

Input/Output

28

8 Physical Data

DataType Data type in which the conversion factors are recorded. Admissible data
types for conversion factors are RealSingle and RealDouble. (Input for
cg_conversion_write; output for cg_conversion_info)

ConversionFactors Two-element array containing the scaling and offset factors. (Input for
cg_conversion_write; output for cg_conversion_read)

ier Error status. (Output)

The DataConversion_t data structure contains factors to convert the nondimensional data to
“raw” dimensional data. The scaling and offset factors are contained in the two-element array
ConversionFactors. In pseudo-Fortran, the conversion process is as follows:

ConversionScale = ConversionFactors(1)
ConversionOffset = ConversionFactors(2)
Data(raw) = Data(nondimensional)*ConversionScale + ConversionOffset

8.4 Dimensional Units

Node: DimensionalUnits_t

Functions Modes
ier = cg_units_write(MassUnits_t mass, LengthUnits_t length, - w m

TimeUnits_t time, TemperatureUnits_t temperature,

AngleUnits_t angle);

ier = cg_unitsfull_write(MassUnits_t mass, LengthUnits_t length, - w m

TimeUnits_t time, TemperatureUnits_t temperature,

AngleUnits_t angle, ElectricCurrentUnits_t current,

SubstanceAmountUnits_t amount,

LuminousIntensityUnits_t intensity);

ier = cg_nunits(int *nunits); r - m

ier = cg_units_read(MassUnits_t *mass , LengthUnits_t *length , r - m

TimeUnits_t *time , TemperatureUnits_t *temperature ,

AngleUnits_t *angle);

ier = cg_unitsfull_read(MassUnits_t *mass , LengthUnits_t *length , r - m

TimeUnits_t *time , TemperatureUnits_t *temperature ,

AngleUnits_t *angle , ElectricCurrentUnits_t *current ,

SubstanceAmountUnits_t *amount ,

LuminousIntensityUnits_t *intensity);

call cg_units_write_f(mass, length, time, temperature, angle, ier) - w m

call cg_unitsfull_write_f(mass, length, time, temperature, angle, - w m

current, amount, intensity, ier)

call cg_nunits_f(int *nunits) r - m

call cg_units_read(mass , length , time , temperature , angle , ier) r - m

call cg_unitsfull_read_f(mass , length , time , temperature , angle , r - m

current , amount , intensity , ier)

29

Mid-Level Library

Input/Output

mass Mass units. Admissible values are CG_Null, CG_UserDefined, Kilogram, Gram,
Slug, and PoundMass. (Input for cg_units_write, cg_unitsfull_write;
output for cg_units_read, cg_unitsfull_read)

length Length units. Admissible values are CG_Null, CG_UserDefined, Meter,
Centimeter, Millimeter, Foot, and Inch. (Input for cg_units_write,
cg_unitsfull_write; output for cg_units_read, cg_unitsfull_read)

time Time units. Admissible values are CG_Null, CG_UserDefined, and Second.
(Input for cg_units_write, cg_unitsfull_write; output for cg_units_read,
cg_unitsfull_read)

temperature Temperature units. Admissible values are CG_Null, CG_UserDefined, Kelvin,
Celsius, Rankine, and Fahrenheit. (Input for cg_units_write,
cg_unitsfull_write; output for cg_units_read, cg_unitsfull_read)

angle Angle units. Admissible values are CG_Null, CG_UserDefined, Degree, and
Radian. (Input for cg_units_write, cg_unitsfull_write; output for
cg_units_read, cg_unitsfull_read)

current Electric current units. Admissible values are CG_Null, CG_UserDefined,
Ampere, Abampere, Statampere, Edison, and auCurrent. (Input for
cg_unitsfull_write; output for cg_unitsfull_read)

amount Substance amount units. Admissible values are CG_Null, CG_UserDefined,
Mole, Entities, StandardCubicFoot, and StandardCubicMeter. (Input for
cg_unitsfull_write; output for cg_unitsfull_read)

intensity Luminous intensity units. Admissible values are CG_Null, CG_UserDefined,
Candela, Candle, Carcel, Hefner, and Violle. (Input for
cg_unitsfull_write; output for cg_unitsfull_read)

nunits Number of units used in the file (i.e., either 5 or 8). (Output)

ier Error status. (Output)

The supported units are declared within typedefs in cgnslib.h and as parameters in cgnslib f.h.

When reading units data, either cg_units_read or cg_unitsfull_read may be used, regardless
of the number of units used in the file. If cg_unitsfull_read is used, but only five units are used
in the file, the returned values of current, amount, and intensity will be CG_Null.

30

8 Physical Data

8.5 Dimensional Exponents

Node: DimensionalExponents_t

Functions Modes
ier = cg_exponents_write(DataType_t DataType, void *exponents); - w m

ier = cg_expfull_write(DataType_t DataType, void *exponents); - w m

ier = cg_nexponents(int *nexponents); r - m

ier = cg_exponents_info(DataType_t *DataType); r - m

ier = cg_exponents_read(void *exponents); r - m

ier = cg_expfull_read(void *exponents); r - m

call cg_exponents_write_f(DataType, exponents, ier) - w m

call cg_expfull_write_f(DataType, exponents, ier) - w m

call cg_nexponents_f(nexponents , ier) r - m

call cg_exponents_info_f(DataType , ier) r - m

call cg_exponents_read_f(exponents , ier) r - m

call cg_expfull_read_f(exponents , ier) r - m

Input/Output

DataType Data type in which the exponents are recorded. Admissible data types for the
exponents are RealSingle and RealDouble. (Input for cg_exponents_write;
output for cg_exponents_info)

exponents Exponents for the dimensional units for mass, length, time, temperature, angle,
electric current, substance amount, and luminous intensity, in that order. (Input
for cg_exponents_write, cg_expfull_write; output for cg_exponents_read,
cg_expfull_read)

nexponents Number of exponents used in the file (i.e., either 5 or 8). (Output)

ier Error status. (Output)

When reading exponent data, either cg_exponents_read or cg_expfull_read may be used,
regardless of the number of exponents used in the file. If cg_exponents_read is used, but all eight
exponents are used in the file, only the first five exponents are returned. If cg_expfull_read is
used, but only five exponents are used in the file, the returned values of the exponents for electric
current, substance amount, and luminous intensity will be zero.

31

9 Location and Position

9.1 Grid Location

Node: GridLocation_t

Functions Modes
ier = cg_gridlocation_write(GridLocation_t GridLocation); - w m

ier = cg_gridlocation_read(GridLocation_t *GridLocation); r - m

call cg_gridlocation_write_f(GridLocation, ier) - w m

call cg_gridlocation_read_f(GridLocation , ier) r - m

Input/Output

GridLocation Location in the grid. The admissible locations are CG_Null, CG_UserDefined,
Vertex, CellCenter, FaceCenter, IFaceCenter, JFaceCenter,
KFaceCenter, and EdgeCenter. (Input for cg_gridlocation_write; output
for cg_gridlocation_read)

ier Error status. (Output)

9.2 Point Sets

Node: IndexArray_t, IndexRange_t

Functions Modes
ier = cg_ptset_write(PointSetType_t *ptset_type, cgsize_t npnts, - w m

cgsize_t *pnts);

ier = cg_ptset_info(PointSetType_t *ptset_type , cgsize_t *npnts); r - m

ier = cg_ptset_read(cgsize_t *pnts); r - m

call cg_ptset_write_f(ptset_type, npnts, pnts, ier) - w m

call cg_ptset_info_f(ptset_type , npnts , ier) r - m

call cg_ptset_read_f(pnts , ier) r - m

Input/Output

ptset_type The point set type; either PointRange for a range of points or cells, or
PointList for a list of discrete points or cells. (Input for cg_ptset_write;
output for cg_ptset_info)

npnts The number of points or cells in the point set. For a point set type of
PointRange, npnts is always two. For a point set type of PointList, npnts is
the number of points or cells in the list. (Input for cg_ptset_write; output for
cg_ptset_info)

pnts The array of point or cell indices defining the point set. There should be npnts
values, each of dimension IndexDimension (i.e., 1 for unstructured grids, and 2
or 3 for structured grids with 2-D or 3-D elements, respectively). (Input for
cg_ptset_write; output for cg_ptset_read)

33

Mid-Level Library

ier Error status. (Output)

These functions may be used to write and read point set data (i.e., an IndexArray_t node named
PointList, or an IndexRange_t node named PointRange). They are only applicable at nodes that
are descendents of a Zone_t node.

9.3 Rind Layers

Node: Rind_t

Functions Modes
ier = cg_rind_write(int *RindData); - w m

ier = cg_rind_read(int *RindData); r - m

call cg_rind_write_f(RindData, ier) - w m

call cg_rind_read_f(RindData , ier) r - m

Input/Output

RindData Number of rind layers for each computational direction (structured grid) or
number of rind points or elements (unstructured grid). (Input for cg_rind_write;
output for cg_rind_read)

ier Error status. (Output)

When writing rind data for elements, cg_section_write must be called first (see Section 11.2),
followed by cg_goto (Section 4) to access the Elements_t node, and then cg_rind_write.

34

10 Auxiliary Data

10.1 Reference State

Node: ReferenceState_t

Functions Modes
ier = cg_state_write(char *StateDescription); - w m

ier = cg_state_read(char **StateDescription); r - m

call cg_state_write_f(StateDescription, ier) - w m

call cg_state_size_f(Size , ier) r - m

call cg_state_read_f(StateDescription , ier) r - m

Input/Output

StateDescription Text description of reference state. (Input for cg_state_write; output
for cg_state_read)

Size Number of characters in the StateDescription string (Fortran interface
only). (Output)

ier Error status. (Output)

The function cg_state_write creates the ReferenceState_t node and must be called even if
StateDescription is undefined (i.e., a blank string). The descriptors, data arrays, data class, and
dimensional units characterizing the ReferenceState_t data structure may be added to this data
structure after its creation.

The function cg_state_read reads the StateDescription of the local ReferenceState_t node.
If StateDescription is undefined in the CGNS database, this function returns a null string. If
StateDescription exists, the library will allocate the space to store the description string, and
return the description string to the application. It is the responsibility of the application to free
this space when it is no longer needed by a call to cg_free(StateDescription), described in
Section 10.6.

10.2 Gravity

Node: Gravity_t

Functions Modes
ier = cg_gravity_write(int fn, int B, float *GravityVector); - w m

ier = cg_gravity_read(int fn, int B, float *GravityVector); r - m

call cg_gravity_write_f(fn, B, GravityVector, ier) - w m

call cg_gravity_read_f(fn, B, GravityVector , ier) r - m

Input/Output

fn CGNS file index number. (Input)

35

Mid-Level Library

B Base index number, where 1 ≤ B ≤ nbases. (Input)

GravityVector Components of the gravity vector. The number of components must equal
PhysicalDimension. (In Fortran, this is an array of Real*4 values.) (Input
for cg_gravity_write; output for cg_gravity_read)

ier Error status. (Output)

10.3 Convergence History

Node: ConvergenceHistory_t

Functions Modes
ier = cg_convergence_write(int niterations, char *NormDefinitions); - w m

ier = cg_convergence_read(int *niterations , char **NormDefinitions); r - m

call cg_convergence_write_f(niterations, NormDefinitions, ier) - w m

call cg_convergence_read_f(niterations , NormDefinitions , ier) r - m

Input/Output

niterations Number of iterations for which convergence information is recorded.
(Input for cg_convergence_write; output for cg_convergence_read)

NormDefinitions Description of the convergence information recorded in the data arrays.
(Input for cg_convergence_write; output for cg_convergence_read)

ier Error status. (Output)

The function cg_convergence_write creates a ConvergenceHistory_t node. It must be the first
one called when recording convergence history data. The NormDefinitions may be left undefined
(i.e., a blank string). After creation of this node, the descriptors, data arrays, data class, and
dimensional units characterizing the ConvergenceHistory_t data structure may be added.

The function cg_convergence_read reads a ConvergenceHistory_t node. If NormDefinitions
is not defined in the CGNS database, this function returns a null string. If NormDefinitions exists,
the library will allocate the space to store the description string, and return the description string
to the application. It is the responsibility of the application to free this space when it is no longer
needed by a call to cg_free(NormDefinitions), described in Section 10.6.

10.4 Integral Data

Node: IntegralData_t

Functions Modes
ier = cg_integral_write(char *Name); - w m

ier = cg_nintegrals(int *nintegrals); r - m

ier = cg_integral_read(int Index, char *Name); r - m

call cg_integral_write_f(Name, ier) - w m

call cg_nintegrals_f(nintegrals , ier) r - m

call cg_integral_read_f(Index, Name , ier) r - m

36

10 Auxiliary Data

Input/Output

Name Name of the IntegralData_t data structure. (Input for cg_integral_write;
output for cg_integral_read)

nintegrals Number of IntegralData_t nodes under current node. (Output)

Index Integral data index number, where 1 ≤ Index ≤ nintegrals. (Input)

ier Error status. (Output)

10.5 User-Defined Data

Node: UserDefinedData_t

Functions Modes
ier = cg_user_data_write(char *Name); - w m

ier = cg_nuser_data(int *nuserdata); r - m

ier = cg_user_data_read(int Index, char *Name); r - m

call cg_user_data_write_f(Name, ier) - w m

call cg_nuser_data_f(nuserdata , ier) r - m

call cg_user_data_read_f(Index, Name , ier) r - m

Input/Output

nuserdata Number of UserDefinedData_t nodes under current node. (Output)

Name Name of the UserDefinedData_t node. (Input for cg_user_data_write;
output for cg_user_data_read)

Index User-defined data index number, where 1 ≤ Index ≤ nuserdata. (Input)

ier Error status. (Output)

After accessing a particular UserDefinedData_t node using cg_goto, the Point Set functions
described in Section 9.2 may be used to read or write point set information for the node. The
function cg_gridlocation_write may also be used to specify the location of the data with respect
to the grid (e.g., Vertex or FaceCenter).

Multiple levels of UserDefinedData_t nodes may be written and retrieved by positioning via
cg_goto. E.g.,

ier = cg_goto(fn, B, "Zone_t", Z, "UserDefinedData_t", ud1,
"UserDefinedData_t", ud2, "UserDefinedData_t", ud3, "end");

10.6 Freeing Memory

Functions Modes
ier = cg_free(void *data); r w m

37

Mid-Level Library

Input/Output

data Data allocated by the Mid-Level Library. (Input)

ier Error status. (Output)

This function does not affect the structure of a CGNS file; it is provided as a convenience to free
memory allocated by the Mid-Level Library when using C. This isn’t necessary in Fortran, and thus
an equivalent Fortran function is not provided.

The functions that are used to allocate memory for return values are cg_descriptor_read,
cg_convergence_read, cg_geo_read, cg_link_read, and cg_state_read. Each of these may allo-
cate space to contain the data returned to the application. It is the responsibility of the application
to free this data when it is no longer needed. Calling cg_free is identical to calling the standard
C function free, however it is probably safer in that the memory is freed in the same module in
which it is created, particularly when the Mid-Level Library is a shared library or DLL. The routine
checks for NULL data and will return CG_ERROR in this case, otherwise it returns CG_OK.

38

11 Grid Specification

11.1 Zone Grid Coordinates

Node: GridCoordinates_t

GridCoordinates_t nodes are used to describe grids associated with a particular zone. The
original grid must be described by a GridCoordinates_t node named GridCoordinates. Additional
GridCoordinates_t nodes may be used, with user-defined names, to store grids at multiple time
steps or iterations. In addition to the discussion of the GridCoordinates_t node in the SIDS and File
Mapping manuals, see the discussion of the ZoneIterativeData_t and ArbitraryGridMotion_t
nodes in the SIDS manual.

Functions Modes
ier = cg_grid_write(int fn, int B, int Z, char *GridCoordName, - w m

int *G);

ier = cg_ngrids(int fn, int B, int Z, int *ngrids); - w m

ier = cg_grid_read(int fn, int B, int Z, int G, char *GridCoordName); r - m

call cg_grid_write_f(fn, B, Z, GridCoordName, G , ier) - w m

call cg_ngrids_f(fn, B, Z, ngrids , ier) - w m

call cg_grid_read_f(fn, B, Z, G, GridCoordName , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

G Grid index number, where 1 ≤ G ≤ ngrids. (Input for cg_grid_read;
output for cg_grid_write)

ngrids Number of GridCoordinates_t nodes for zone Z. (Output)

GridCoordinateName Name of the GridCoordinates_t node. Note that the name
“GridCoordinates” is reserved for the original grid and must be the
first GridCoordinates_t node to be defined. (Input for
cg_grid_write; output for cg_grid_read)

ier Error status. (Output)

The above functions are applicable to any GridCoordinates_t node.

39

Mid-Level Library

Functions Modes
ier = cg_coord_write(int fn, int B, int Z, DataType_t datatype, - w m

char *coordname, void *coord_array, int *C);

ier = cg_coord_partial_write(int fn, int B, int Z, - w m

DataType_t datatype, char *coordname, cgsize_t *range_min,

cgsize_t *range_max, void *coord_array, int *C);

ier = cg_ncoords(int fn, int B, int Z, int *ncoords); r - m

ier = cg_coord_info(int fn, int B, int Z, int C, DataType_t *datatype , r - m

char *coordname);

ier = cg_coord_read(int fn, int B, int Z, char *coordname, r - m

DataType_t datatype, cgsize_t *range_min, cgsize_t *range_max,

void *coord_array);

call cg_coord_write_f(fn, B, Z, datatype, coordname, coord_array, C , - w m

ier)

call cg_coord_partial_write_f(fn, B, Z, datatype, coordname, range_min, - w m

range_max, coord_array, C , ier)

call cg_ncoords_f(fn, B, Z, ncoords , ier) r - m

call cg_coord_info_f(fn, B, Z, C, datatype , coordname , ier) r - m

call cg_coord_read_f(fn, B, Z, coordname, datatype, range_min, r - m

range_max, coord_array , ier)

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

C Coordinate array index number, where 1 ≤ C ≤ ncoords. (Input for
cg_coord_info; output for cg_coord_write)

ncoords Number of coordinate arrays for zone Z. (Output)

datatype Data type in which the coordinate array is written. Admissible data types for
a coordinate array are RealSingle and RealDouble. (Input for
cg_coord_write, cg_coord_partial_write, cg_coord_read; output for
cg_coord_info)

coordname Name of the coordinate array. It is strongly advised to use the SIDS
nomenclature conventions when naming the coordinate arrays to insure file
compatibility. (Input for cg_coord_write, cg_coord_partial_write,
cg_coord_read; output for cg_coord_info)

range_min Lower range index (eg., imin, jmin, kmin). (Input)

range_max Upper range index (eg., imax, jmax, kmax). (Input)

coord_array Array of coordinate values for the range prescribed. (Input for
cg_coord_write; cg_coord_partial_write, output for cg_coord_read)

40

11 Grid Specification

ier Error status. (Output)

The above functions are applicable only to the GridCoordinates_t node named GridCoordi-
nates, used for the original grid in a zone. Coordinates for additional GridCoordinates_t nodes
in a zone must be read and written using the cg_array_xxx functions described in Section 8.1.

When writing, the function cg_coord_write will automatically write the full range of coordinates
(i.e., the entire coord_array). The function cg_coord_partial_write may be used to write only
a subset of coord_array. When using the partial write, any existing data as defined by range_min
and range_max will be overwritten by the new values. All other values will not be affected.

The function cg_coord_read returns the coordinate array coord_array, for the range prescribed
by range_min and range_max. The array is returned to the application in the data type requested
in datatype. This data type does not need to be the same as the one in which the coordinates are
stored in the file. A coordinate array stored as double precision in the CGNS file can be returned
to the application as single precision, or vice versa.

In Fortran, when using cg_coord_read_f to read 2D or 3D coordinates, the extent of each
dimension of coord_array must be consistent with the requested range. When reading a 1D solution,
the declared size can be larger than the requested range. For example, for a 2D zone with 100 ×
50 vertices, if range_min and range_max are set to (11,11) and (20,20) to read a subset of the
coordinates, then coord_array must be dimensioned (10,10). If coord_array is declared larger
(e.g., (100,50)) the indices for the returned coordinates will be wrong.

41

Mid-Level Library

11.2 Element Connectivity

Node: Elements_t

Functions Modes
ier = cg_section_write(int fn, int B, int Z, char *ElementSectionName, - w m

ElementType_t type, cgsize_t start, cgsize_t end, int nbndry,

cgsize_t *Elements, int *S);

ier = cg_section_partial_write(int fn, int B, int Z, - w m

char *ElementSectionName, ElementType_t type, cgsize_t start,

cgsize_t end, int nbndry, int *S);

ier = cg_elements_partial_write(int fn, int B, int Z, int S, - w m

cgsize_t start, cgsize_t end, cgsize_t *Elements);

ier = cg_parent_data_write(int fn, int B, int Z, int S, - w m

cgsize_t *ParentData);

ier = cg_parent_data_partial_write(int fn, int B, int Z, int S, - w m

cgsize_t start, cgsize_t end, cgsize_t *ParentData);

ier = cg_nsections(int fn, int B, int Z, int *nsections); r - m

ier = cg_section_read(int fn, int B, int Z, int S, r - m

char *ElementSectionName , ElementType_t *type , cgsize_t *start ,

cgsize_t *end , int *nbndry , int *parent_flag);

ier = cg_ElementDataSize(int fn, int B, int Z, int S, r - m

cgsize_t *ElementDataSize);

ier = cg_ElementPartialSize(int fn, int B, int Z, int S, r - m

cgsize_t start, cgsize_t end, cgsize_t *ElementDataSize);

ier = cg_elements_read(int fn, int B, int Z, int S, r - m

cgsize_t *Elements , cgsize_t *ParentData);

ier = cg_elements_partial_read(int fn, int B, int Z, int S, r - m

cgsize_t start, cgsize_t end, cgsize_t *Elements ,

cgsize_t *ParentData);

ier = cg_npe(ElementType_t type, int *npe); r w m

42

11 Grid Specification

Functions Modes
call cg_section_write_f(fn, B, Z, ElementSectionName, type, start, end, - w m

nbndry, Elements, S , ier)

call cg_section_partial_write_f(fn, B, Z, ElementSectionName, type, - w m

start, end, nbndry, S , ier)

call cg_elements_partial_write_f(fn, B, Z, S, - w m

start, end, Elements, ier);

call cg_parent_data_write_f(fn, B, Z, S, ParentData, ier) - w m

call cg_parent_data_partial_write_f(fn, B, Z, S, start, - w m

end, ParentData, ier)

call cg_nsections_f(fn, B, Z, nsections , ier) r - m

call cg_section_read_f(fn, B, Z, S, ElementSectionName , type , r - m

start , end , nbndry , parent_flag , ier)

call cg_ElementDataSize_f(fn, B, Z, S, ElementDataSize , ier) r - m

call cg_ElementPartialSize_f(fn, B, Z, S, start, end, ElementDataSize , r - m

ier)

call cg_elements_read_f(fn, B, Z, S, Elements , ParentData , ier) r - m

call cg_elements_partial_read_f(fn, B, Z, S, start, end, Elements , r - m

ParentData , ier)

call cg_npe_f(type, npe , ier) r w m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

ElementSectionName Name of the Elements_t node. (Input for cg_section_write; output
for cg_section_read)

type Type of element. See the eligible types for ElementType_t in
Section 2.6. (Input for cg_section_write, cg_npe; output for
cg_section_read)

start Index of first element in the section. (Input for cg_section_write,
cg_section_partial_write, cg_parent_data_partial_write,
cg_ElementPartialSize, cg_elements_partial_write; output for
cg_section_read)

end Index of last element in the section. (Input for cg_section_write,
cg_section_partial_write, cg_parent_data_partial_write,
cg_ElementPartialSize, cg_elements_partial_write; output for
cg_section_read)

nbndry Index of last boundary element in the section. Set to zero if the
elements are unsorted. (Input for cg_section_write; output for
cg_section_read)

43

Mid-Level Library

nsections Lower range index (eg., imin, jmin, kmin). (Output)

S Element section index, where 1 ≤ S ≤ nsections. (Input for
cg_parent_data_write, cg_section_read, cg_ElementDataSize,
cg_elements_read; output for cg_section_write)

parent_flag Flag indicating if the parent data are defined. If the parent data exist,
parent_flag is set to 1; otherwise it is set to 0. (Output)

ElementDataSize Number of element connectivity data values. (Output)

Elements Element connectivity data. (Input for cg_section_write; output for
cg_elements_read)

ParentData For boundary or interface elements, this array contains information on
the cell(s) and cell face(s) sharing the element. If you do not need to
read the ParentData when reading the ElementData, you may set the
value to NULL. (Output)

npe Number of nodes for an element of type type. (Output)

ier Error status. (Output)

If the specified Elements_t node doesn’t yet exist, it may be created using either cg_sec-
tion_write or cg_section_partial_write. The function cg_section_write writes the full range
as indicated by start and end and supplied by the element connectivity array Elements. The
cg_section_partial_write function will create the element section data for the range start to end
with the element data intialized to 0. To add elements to the section, use cg_elements_partial_write
and parent data (it it exists) using cg_parent_data_partial_write. Both of these functions will
replace the data for the range as indicated by start and end with the new values. In most cases, the
data is not duplicated in the mid-level library, but written directly from the user data to disk. The
exception to this is in the case of MIXED, NGON_n, and NFACE_n element sets. Since the size of the
element connectivity array is not known directly, the MLL will keep a copy of the data in memory
for the partial writes.

The function cg_elements_read returns all of the element connectivity and parent data. Speci-
fied subsets of the element connectivity and parent data may be read using cg_elements_partial_read.

11.3 Axisymmetry

Node: Axisymmetry_t

Functions Modes
ier = cg_axisym_write(int fn, int B, float *ReferencePoint, - w m

float *AxisVector);

ier = cg_axisym_read(int fn, int B, float *ReferencePoint , r - m

float *AxisVector);

call cg_axisym_write_f(fn, B, ReferencePoint, AxisVector, ier) - w m

call cg_axisym_read_f(fn, B, ReferencePoint , AxisVector , ier) r - m

Input/Output

44

11 Grid Specification

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

ReferencePoint Origin used for defining the axis of rotation. (In Fortran, this is an array of
Real*4 values.) (Input for cg_axisym_write; output for cg_axisym_read)

AxisVector Direction cosines of the axis of rotation, through the reference point. (In
Fortran, this is an array of Real*4 values.) (Input for cg_axisym_write;
output for cg_axisym_read)

ier Error status. (Output)

This node can only be used for a bi-dimensional model, i.e., PhysicalDimension must equal two.

11.4 Rotating Coordinates

Node: RotatingCoordinates_t

Functions Modes
ier = cg_rotating_write(float *RotationRateVector, - w m

float *RotationCenter);

ier = cg_rotating_read(float *RotationRateVector , r - m

float *RotationCenter);

call cg_rotating_write_f(RotationRateVector, RotationCenter, ier) - w m

call cg_rotating_read_f(RotationRateVector , RotationCenter , ier) r - m

Input/Output

RotationRateVector Components of the angular velocity of the grid about the center of
rotation. (In Fortran, this is an array of Real*4 values.) (Input for
cg_rotating_write; output for cg_rotating_read)

RotationCenter Coordinates of the center of rotation. (In Fortran, this is an array of
Real*4 values.) (Input for cg_rotating_write; output for
cg_rotating_read)

ier Error status. (Output)

45

12 Solution Data

12.1 Flow Solution

Node: FlowSolution_t

Functions Modes
ier = cg_sol_write(int fn, int B, int Z, char *solname, - w m

GridLocation_t location, int *S);

ier = cg_nsols(int fn, int B, int Z, int *nsols); r - m

ier = cg_sol_info(int fn, int B, int Z, int S, char *solname , r - m

GridLocation_t *location);

ier = cg_sol_ptset_write(int fn, int B, int Z, char *solname, - w m

GridLocation_t location, PointSetType_t ptset_type,

cgsize_t npnts, cgsize_t *pnts, int *S);

ier = cg_sol_ptset_info(int fn, int B, int Z, int S, r - m

PointSetType_t *ptset_type , cgsize_t *npnts);

ier = cg_sol_ptset_read(int fn, int B, int Z, int S, cgsize_t *pnts); r - m

ier = cg_sol_size(int fn, int B, int Z, int S, int *data_dim , r - m

cgsize_t *dim_vals);

call cg_sol_write_f(fn, B, Z, solname, location, S , ier) - w m

call cg_nsols_f(fn, B, Z, nsols , ier) r - m

call cg_sol_info_f(fn, B, Z, S, solname , location , ier) r - m

call cg_sol_ptset_write_f(fn, B, Z, solname, location, ptset_type, - w m

npnts, pnts, S , ier)

call cg_sol_ptset_info_f(fn, B, Z, S, ptset_type , npnts , ier) r - m

call cg_sol_ptset_read_f(fn, B, Z, S, pnts , ier) r - m

call cg_sol_size_f(fn, B, Z, S, data_dim , dim_vals , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

S Flow solution index number, where 1 ≤ S ≤ nsols. (Input for cg_sol_info;
output for cg_sol_write)

nsols Number of flow solutions for zone Z. (Output)

solname Name of the flow solution. (Input for cg_sol_write; output for cg_sol_info)

location Grid location where the solution is recorded. The current admissible locations
are Vertex, CellCenter, IFaceCenter, JFaceCenter, and KFaceCenter.
(Input for cg_sol_write and cg_sol_ptset_write; output for cg_sol_info)

47

Mid-Level Library

ptset_type Type of point set defining the interface in the current solution; either
PointRange or PointList. (Input for cg_sol_ptset_write; output for
cg_sol_ptset_info)

npnts Number of points defining the interface in the current solution. For a
ptset_type of PointRange, npnts is always two. For a ptset_type of
PointList, npnts is the number of points in the list. (Input for
cg_sol_ptset_write; output for cg_sol_ptset_info)

pnts Array of points defining the interface in the current solution. (Input for
cg_sol_ptset_write; output for cg_sol_ptset_read)

data_dim Number of dimensions defining the solution data. If a point set has been defined,
this will be 1, otherwise this will be the current zone index dimension. (Output)

dim_vals The array of data_dim dimensions for the solution data. (Output)

ier Error status. (Output)

The above functions are used to create, and get information about, FlowSolution_t nodes.

Solution data may be specified over the entire zone, as in previous versions of the library, using
cg_sol_write or over a patch region of the zone using cg_sol_ptset_write. The two are mutually
exclusive. In the first case, the size of the solution data is determined by the size of the zone, the
grid location, and rind data (if any) as in previous versions. In the second case the solution data
size is entirely determined by the PointList/PointRange patch. In order to determine which of the
two forms in which the solution data was written, use cg_sol_ptset_info. If the solution is over
the entire zone, ptset_type will be returned as CG_Null and npnts as 0. Otherwise, ptset_type
will be either PointList or PointRange, and the number of points will be returned in npnts.

To assist in determining the size of the solution data, the function cg_sol_size has been added.
For a solution defined over the full zone, data_dim returns the index dimension for the zone, and
dim_vals specifies the dimensions of the data, corrected for the grid location type and rind data. If
a point set patch has been specified, data_dim will be 1 and dim_vals will contain the total size of
the patch.

Acceptable values of GridLocation_t are Vertex and CellCenter. If the base cell dimension is 2
or greater (surface or volume), then EdgeCenter is also allowed. For 3 dimensional bases, FaceCen-
ter, and for structured zones, IFaceCenter, JFaceCenter and KFaceCenter, are also acceptable.

48

12 Solution Data

12.2 Flow Solution Data

Functions Modes
ier = cg_field_write(int fn, int B, int Z, int S, DataType_t datatype, - w m

char *fieldname, void *solution_array, int *F);

ier = cg_field_partial_write(int fn, int B, int Z, int S, - w m

DataType_t datatype, char *fieldname, cgsize_t *range_min,

cgsize_t *range_max, void *solution_array, int *F);

ier = cg_nfields(int fn, int B, int Z, int S, int *nfields); r - m

ier = cg_field_info(int fn, int B, int Z, int S, int F, r - m

DataType_t *datatype , char *fieldname);

ier = cg_field_read(int fn, int B, int Z, int S, char *fieldname, r - m

DataType_t datatype, cgsize_t *range_min, cgsize_t *range_max,

void *solution_array);

call cg_field_write_f(fn, B, Z, S, datatype, fieldname, solution_array, - w m

F , ier)

call cg_field_partial_write_f(fn, B, Z, S, datatype, fieldname, - w m

range_min, range_max, solution_array, F , ier)

call cg_nfields_f(fn, B, Z, S, nfields , ier) r - m

call cg_field_info_f(fn, B, Z, S, F, datatype , fieldname , ier) r - m

call cg_field_read_f(fn, B, Z, S, fieldname, datatype, range_min, r - m

range_max, solution_array , ier)

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

S Flow solution index number, where 1 ≤ S ≤ nsols. (Input)

F Solution array index number, where 1 ≤ F ≤ nfields. (Input for
cg_field_info; output for cg_field_write)

nfields Number of data arrays in flow solution S. (Output)

datatype Data type in which the solution array is written. Admissible data types for
a solution array are Integer, RealSingle, and RealDouble. (Input for
cg_field_write, cg_field_read; output for cg_field_info)

fieldname Name of the solution array. It is strongly advised to use the SIDS
nomenclature conventions when naming the solution arrays to insure file
compatibility. (Input for cg_field_write, cg_field_read; output for
cg_field_info)

range_min Lower range index (eg., imin, jmin, kmin). (Input)

range_max Upper range index (eg., imax, jmax, kmax). (Input)

49

Mid-Level Library

solution_array Array of solution values for the range prescribed. (Input for
cg_field_write; output for cg_field_read)

ier Error status. (Output)

The above functions are used to read and write solution arrays stored below a FlowSolution_t
node.

When writing, the function cg_field_write will automatically write the full range of the solution
(i.e., the entire solution_array). The function cg_field_partial_write may be used to write
only a subset of solution_array. When using the partial write, any existing data from range_min
to range_max will be overwritten by the new values. All other values will not be affected.

The function cg_field_read returns the solution array fieldname, for the range prescribed by
range_min and range_max. The array is returned to the application in the data type requested in
datatype. This data type does not need to be the same as the one in which the data is stored in the
file. A solution array stored as double precision in the CGNS file can be returned to the application
as single precision, or vice versa.

In Fortran, when using cg_field_read_f to read a 2D or 3D solution, the extent of each dimen-
sion of solution_array must be consistent with the requested range. When reading a 1D solution,
the declared size can be larger than the requested range. For example, for a 2D zone with 100× 50
vertices, if range_min and range_max are set to (11,11) and (20,20) to read a subset of the solution,
then solution_array must be dimensioned (10,10). If solution_array is declared larger (e.g.,
(100,50)) the indices for the returned array values will be wrong.

50

12 Solution Data

12.3 Discrete Data

Node: DiscreteData_t

Functions Modes
ier = cg_discrete_write(int fn, int B, int Z, char *DiscreteName, - w m

int *D);

ier = cg_ndiscrete(int fn, int B, int Z, int *ndiscrete); r - m

ier = cg_discrete_read(int fn, int B, int Z, int D, r - m

char *DiscreteName);

ier = cg_discrete_ptset_write(int fn, int B, int Z, char *DiscreteName, - w m

GridLocation_t location, PointSetType_t ptset_type,

cgsize_t npnts, cgsize_t *pnts, int *D);

ier = cg_discrete_ptset_info(int fn, int B, int Z, int D, r - m

PointSetType_t *ptset_type , cgsize_t *npnts);

ier = cg_discrete_ptset_read(int fn, int B, int Z, int D, r - m

cgsize_t *pnts);

ier = cg_discrete_size(int fn, int B, int Z, int D, int *data_dim , r - m

cgsize_t *dim_vals);

call cg_discrete_write_f(fn, B, Z, DiscreteName, D , ier) - w m

call cg_ndiscrete_f(fn, B, Z, ndiscrete , ier) r - m

call cg_discrete_read_f(fn, B, Z, D, DiscreteName , ier) r - m

call cg_discrete_ptset_write_f(fn, B, Z, DiscreteName, location, - w m

ptset_type, npnts, pnts, D , ier)

call cg_discrete_ptset_info_f(fn, B, Z, D, ptset_type , npnts , ier) r - m

call cg_discrete_ptset_read_f(fn, B, Z, D, pnts , ier) r - m

call cg_discrete_size_f(fn, B, Z, D, data_dim , dim_vals , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

D Discrete data index number, where 1 ≤ D ≤ ndiscrete. (Input for
cg_discrete_read; output for cg_discrete_write)

ndiscrete Number of DiscreteData_t data structures under zone Z. (Output)

DiscreteName Name of DiscreteData_t data structure. (Input for cg_discrete_write;
output for cg_discrete_read)

location Grid location where the discrete data is recorded. The current admissible
locations are Vertex, CellCenter, IFaceCenter, JFaceCenter, and
KFaceCenter. (Input for cg_discrete_ptset_write; output for
cg_sol_info)

51

Mid-Level Library

ptset_type Type of point set defining the interface for the discrete data; either
PointRange or PointList. (Input for cg_sol_ptset_write; output for
cg_sol_ptset_info)

npnts Number of points defining the interface for the discrete data. For a
ptset_type of PointRange, npnts is always two. For a ptset_type of
PointList, npnts is the number of points in the list. (Input for
cg_sol_ptset_write; output for cg_sol_ptset_info)

pnts Array of points defining the interface for the discrete data. (Input for
cg_sol_ptset_write; output for cg_sol_ptset_read)

data_dim Number of dimensions defining the discrete data. If a point set has been
defined, this will be 1, otherwise this will be the current zone index
dimension. (Output)

dim_vals The array of data_dim dimensions for the discrete data. (Output)

ier Error status. (Output)

DiscreteData_t nodes are intended for the storage of fields of data not usually identified as part
of the flow solution, such as fluxes or equation residuals.

The description for these functions is similar to the FlowSolution_t node (Section 12.1). To
read and write the discrete data, use cg_goto (Section 4) to access the DiscreteData_t node, then
cg_array_read and cg_array_write (Section 8.1).

52

12 Solution Data

12.4 Zone Subregions

Node: ZoneSubRegion_t

Functions Modes
ier = cg_nsubregs(int fn, int B, int Z, int *nsubregs); r - m

ier = cg_subreg_info(int fn, int B, int Z, int S, char *regname , r - m

int *dimension , GridLocation_t *location ,

PointSetType_t *ptset_type , cgsize_t *npnts ,

int *bcname_len , int *bcname_len);

ier = cg_subreg_ptset_read(int fn, int B, int Z, int S, r - m

cgsize_t *pnts);

ier = cg_subreg_bcname_read(int fn, int B, int Z, int S, r - m

char *bcname);

ier = cg_subreg_gcname_read(int fn, int B, int Z, int S, r - m

char *gcname);

ier = cg_subreg_ptset_write(int fn, int B, int Z, const char *regname, - w m

int dimension, GridLocation_t location,

PointSetType_t ptset_type, cgsize_t npnts,

cgsize_t *pnts, int *S);

ier = cg_subreg_bcname_write(int fn, int B, int Z, const char *regname, - w m

int dimension, const char *bcname, int *S);

ier = cg_subreg_gcname_write(int fn, int B, int Z, const char *regname, - w m

int dimension, const char *gcname, int *S);

call cg_nsubregs_f(fn, B, Z, nsubregs , ier) r - m

call cg_subreg_info_f(fn, B, Z, S, regname , dimension , location , r - m

ptset_type , npnts , bcname_len , bcname_len , ier)

call cg_subreg_ptset_read_f(fn, B, Z, S, pnts , ier) r - m

call cg_subreg_bcname_read_f(fn, B, Z, S, bcname , ier) r - m

call cg_subreg_gcname_read_f(fn, B, Z, S, gcname , ier) r - m

call cg_subreg_ptset_write_f(fn, B, Z, regname, dimension, location, - w m

ptset_type, npnts, pnts, S , ier)

call cg_subreg_bcname_write_f(fn, B, Z, regname, dimension, bcname, - w m

S , ier)

call cg_subreg_gcname_write_f(fn, B, Z, regname, dimension, gcname, - w m

S , ier)

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

S ZoneSubRegion index number, where 1 ≤ S ≤ nsubregs. (Input for
cg_subreg_info, cg_subreg_ptset_read, cg_subreg_bcname_read and

53

Mid-Level Library

cg_subreg_gcname_read; output for cg_subreg_ptset_write,
cg_subreg_bcname_write and cg_subreg_gcname_write)

nsubregs Number of ZoneSubRegion_t nodes under Zone Z. (Output)

regname Name of the ZoneSubRegion_t node. (Input for cg_subreg_ptset_write,
cg_subreg_bcname_write, and cg_subreg_gcname_write; output for
cg_subreg_info)

dimension Dimensionality of the subregion. 1 for lines, 2 for faces, 3 for volumes. (Input
for cg_subreg_ptset_write, cg_subreg_bcname_write, and
cg_subreg_gcname_write; output for cg_subreg_info)

location Grid location used in the definition of the point set. The current admissible
locations are Vertex and CellCenter. (Input for cg_subreg_ptset_write;
output for cg_subreg_info)

ptset_type Type of point set defining the interface for the subregion data; either
PointRange or PointList. (Input for cg_subreg_ptset_write; output for
cg_subreg_info)

npnts Number of points defining the interface for the subregion data. For a
ptset_type of PointRange, npnts is always two. For a ptset_type of
PointList, npnts is the number of points in the list. (Input for
cg_subreg_ptset_write; output for cg_subreg_info)

pnts Array of points defining the interface for the subregion data. (Input for
cg_subreg_ptset_write; output for cg_subreg_ptset_read)

bcname The name of a BC_t node which defines the subregion. (Input for
cg_subreg_bcname_write; output for cg_subreg_bcname_read)

gcname The name of a GridConnectivity_t or GridConnectivity1to1_t node which
defines the subregion. (Input for cg_subreg_gcname_write; output for
cg_subreg_gcname_read)

bcname_len String length of bcname. (Output)

gcname_len String length of gcname. (Output)

ier Error status. (Output)

These functions allow for the specification of Zone subregions. The subregion may be specified as
either the name of an existing BC_t node (cg_subreg_bcname_write), an existing GridConnectiv-
ity_t or GridConnectivity1to1_t node (cg_subreg_gcname_write), or as a PointSet/PointRange
(cg_subreg_ptset_write). These specifications are mutually exclusive. To determine the type of
the subregion, use cg_subreg_info. If the subregion is a point set, then ptset_type will indicate
the point set type (either PointList or PointRange) and npts will be set to the number of points to
define the region. Otherwise, ptset_type will be set to CG_Null and npnts will be 0. In this case,
one of bcname_len or gcname_len will be non-zero, indicating whether the subregion references a
BC_t node (bcname_len non-zero) or GridConnectivity_t node (gcname_len non-zero).

54

13 Grid Connectivity

13.1 One-to-One Connectivity

Node: GridConnectivity1to1_t

Functions Modes
ier = cg_n1to1_global(int fn, int B, int *n1to1_global); r - m

ier = cg_1to1_read_global(int fn, int B, char **connectname , r - m

char **zonename , char **donorname , cgsize_t **range ,

cgsize_t **donor_range , int **transform);

call cg_n1to1_global_f(fn, B, n1to1_global , ier) r - m

call cg_1to1_read_global_f(fn, B, connectname , zonename , donorname , r - m

range , donor_range , transform , ier)

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

n1to1_global Total number of one-to-one interfaces in base B, stored under
GridConnectivity1to1_t nodes. (I.e., this does not include one-to-one
interfaces that may be stored under GridConnectivity_t nodes, used for
generalized zone interfaces.) Note that the function cg_n1to1 (described
below) may be used to get the number of one-to-one interfaces in a specific
zone. (Output)

connectname Name of the interface. (Output)

zonename Name of the first zone, for all one-to-one interfaces in base B. (Output)

donorname Name of the second zone, for all one-to-one interfaces in base B. (Output)

range Range of points for the first zone, for all one-to-one interfaces in base B.
(Output)

donor_range Range of points for the current zone, for all one-to-one interfaces in base B.
(Output)

transform Short hand notation for the transformation matrix defining the relative
orientation of the two zones. This transformation is given for all one-to-one
interfaces in base B. See the description of GridConnectivity1to1_t in the
SIDS manual for details. (Output)

ier Error status. (Output)

The above functions may be used to get information about all the one-to-one zone interfaces in
a CGNS database.

55

Mid-Level Library

Functions Modes
ier = cg_1to1_write(int fn, int B, int Z, char *connectname, - w m

char *donorname, cgsize_t *range, cgsize_t *donor_range,

int *transform, int *I);

ier = cg_n1to1(int fn, int B, int Z, int *n1to1); r - m

ier = cg_1to1_read(int fn, int B, int Z, int I, char *connectname , r - m

char *donorname , cgsize_t *range , cgsize_t *donor_range ,

int *transform);

call cg_1to1_write_f(fn, B, Z, connectname, donorname, range, - w m

donor_range, transform, I , ier)

call cg_n1to1_f(fn, B, Z, n1to1 , ier) r - m

call cg_1to1_read_f(fn, B, Z, I, connectname , donorname , range , r - m

donor_range , transform , ier)

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

I Interface index number, where 1 ≤ I ≤ n1to1. (Input for cg_1to1_read;
output for cg_1to1_write)

n1to1 Number of one-to-one interfaces in zone Z, stored under
GridConnectivity1to1_t nodes. (I.e., this does not include one-to-one
interfaces that may be stored under GridConnectivity_t nodes, used for
generalized zone interfaces.) (Output)

connectname Name of the interface. (Input for cg_1to1_write; output for cg_1to1_read)

donorname Name of the zone interfacing with the current zone. (Input for
cg_1to1_write; output for cg_1to1_read)

range Range of points for the current zone. (Input for cg_1to1_write; output for
cg_1to1_read)

donor_range Range of points for the donor zone. (Input for cg_1to1_write; output for
cg_1to1_read)

transform Short hand notation for the transformation matrix defining the relative
orientation of the two zones. See the description of GridConnectivity1to1_t
in the SIDS manual for details. (Input for cg_1to1_write; output for
cg_1to1_read)

ier Error status. (Output)

The above functions are used to read and write one-to-one connectivity data for a specific zone.

56

13 Grid Connectivity

13.2 Generalized Connectivity

Node: GridConnectivity_t

Functions Modes
ier = cg_conn_write(int fn, int B, int Z, char *connectname, - w m

GridLocation_t location, GridConnectivityType_t connect_type,

PointSetType_t ptset_type, cgsize_t npnts, cgsize_t *pnts,

char *donorname, ZoneType_t donor_zonetype,

PointSetType_t donor_ptset_type, DataType_t donor_datatype,

cgsize_t ndata_donor, cgsize_t *donor_data, int *I);

ier = cg_conn_write_short(int fn, int B, int Z, char *connectname, - w m

GridLocation_t location, GridConnectivityType_t connect_type,

PointSetType_t ptset_type, cgsize_t npnts, cgsize_t *pnts,

char *donorname, int *I);

ier = cg_nconns(int fn, int B, int Z, int *nconns); r - m

ier = cg_conn_info(int fn, int B, int Z, int I, char *connectname , r - m

GridLocation_t *location , GridConnectivityType_t *connect_type ,

PointSetType_t *ptset_type , cgsize_t *npnts , char *donorname ,

ZoneType_t *donor_zonetype , PointSetType_t *donor_ptset_type ,

DataType_t *donor_datatype , cgsize_t *ndata_donor);

ier = cg_conn_read(int fn, int B, int Z, int I, cgsize_t *pnts , r - m

DataType_t donor_datatype, cgsize_t *donor_data);

ier = cg_conn_read_short(int fn, int B, int Z, int I, cgsize_t *pnts); r - m

call cg_conn_write_f(fn, B, Z, connectname, location, connect_type, - w m

ptset_type, npnts, pnts, donorname, donor_zonetype,

donor_ptset_type, donor_datatype, ndata_donor, donor_data, I ,

ier)

call cg_conn_write_short_f(fn, B, Z, connectname, location, - w m

connect_type, ptset_type, npnts, pnts, donorname, I , ier)

call cg_nconns_f(fn, B, Z, nconns , ier) r - m

call cg_conn_info_f(fn, B, Z, I, connectname , location , connect_type , r - m

ptset_type , npnts , donorname , donor_zonetype , donor_ptset_type ,

donor_datatype , ndata_donor , ier)

call cg_conn_read_f(fn, B, Z, I, pnts , donor_datatype, donor_data , r - m

ier)

call cg_conn_read_short_f(fn, B, Z, I, pnts , ier)

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

57

Mid-Level Library

I Discrete data index number, where 1 ≤ I ≤ nconns. (Input for
cg_conn_info, cg_conn_read; output for cg_conn_write,
cg_conn_write_short)

nconns Number of interfaces for zone Z. (Output)

connectname Name of the interface. (Input for cg_conn_write,
cg_conn_write_short; output for cg_conn_info)

location Grid location used in the definition of the point set. The currently
admissible locations are Vertex and CellCenter. (Input for
cg_conn_write, cg_conn_write_short; output for cg_conn_info)

connect_type Type of interface being defined. The admissible types are Overset,
Abutting, and Abutting1to1. (Input for cg_conn_write,
cg_conn_write_short; output for cg_conn_info)

ptset_type Type of point set defining the interface in the current zone; either
PointRange or PointList. (Input for cg_conn_write,
cg_conn_write_short; output for cg_conn_info)

donor_ptset_type Type of point set defining the interface in the donor zone; either
PointListDonor or CellListDonor. (Input for cg_conn_write; output
for cg_conn_info)

npnts Number of points defining the interface in the current zone. For a
ptset_type of PointRange, npnts is always two. For a ptset_type of
PointList, npnts is the number of points in the PointList. (Input for
cg_conn_write, cg_conn_write_short; output for cg_conn_info)

ndata_donor Number of points or cells in the current zone. These are paired with
points, cells, or fractions thereof in the donor zone. (Input for
cg_conn_write; output for cg_conn_info)

donorname Name of the zone interfacing with the current zone. (Input for
cg_conn_write; output for cg_conn_info)

donor_datatype Data type in which the donor points are stored in the file. As of Version
3.0, this value is ignored when writing, and on reading it will return
either Integer or LongInteger depending on whether the file was
written using 32 or 64-bit. The donor_datatype argument was left in
these functions only for backward compatibility. The donot data is
always read as cgsize_t. (Input for cg_conn_write, cg_conn_read;
output for cg_conn_info)

pnts Array of points defining the interface in the current zone. (Input for
cg_conn_write, cg_conn_write_short; output for cg_conn_read)

donor_data Array of donor points or cells corresponding to ndata_donor. Note that
it is possible that the same donor point or cell may be used multiple
times. (Input for cg_conn_write; output for cg_conn_read)

donor_zonetype Type of the donor zone. The admissible types are Structured and
Unstructured. (Input for cg_conn_write; output for cg_conn_info)

ier Error status. (Output)

58

13 Grid Connectivity

Note that the interpolation factors stored in the InterpolantsDonor data array are accessed
using the cg_goto and cg_array_xxx functions, described in Section 4 and Section 8.1, respectively.

59

Mid-Level Library

13.3 Special Grid Connectivity Properties

Node: GridConnectivityProperty_t

Functions Modes
ier = cg_conn_periodic_write(int fn, int B, int Z, int I, - w m

float *RotationCenter, float *RotationAngle, float *Translation);

ier = cg_conn_average_write(int fn, int B, int Z, int I, - w m

AverageInterfaceType_t AverageInterfaceType);

ier = cg_1to1_periodic_write(int fn, int B, int Z, int I, - w m

float *RotationCenter, float *RotationAngle, float *Translation);

ier = cg_1to1_average_write(int fn, int B, int Z, int I, - w m

AverageInterfaceType_t AverageInterfaceType);

ier = cg_conn_periodic_read(int fn, int B, int Z, int I, r - m

float *RotationCenter , float *RotationAngle ,

float *Translation);

ier = cg_conn_average_read(int fn, int B, int Z, int I, r - m

AverageInterfaceType_t *AverageInterfaceType);

ier = cg_1to1_periodic_read(int fn, int B, int Z, int I, r - m

float *RotationCenter , float *RotationAngle ,

float *Translation);

ier = cg_1to1_average_read(int fn, int B, int Z, int I, r - m

AverageInterfaceType_t *AverageInterfaceType);

call cg_conn_periodic_write_f(fn, B, Z, I, RotationCenter, - w m

RotationAngle, Translation, ier)

call cg_conn_average_write_f(fn, B, Z, I, AverageInterfaceType, ier) - w m

call cg_1to1_periodic_write_f(fn, B, Z, I, RotationCenter, - w m

RotationAngle, Translation, ier)

call cg_1to1_average_write_f(fn, B, Z, I, AverageInterfaceType, ier) - w m

call cg_conn_periodic_read_f(fn, B, Z, I, RotationCenter , r - m

RotationAngle , Translation , ier)

call cg_conn_average_read_f(fn, B, Z, I, AverageInterfaceType , ier) r - m

call cg_1to1_periodic_read_f(fn, B, Z, I, RotationCenter , r - m

RotationAngle , Translation , ier)

call cg_1to1_average_read_f(fn, B, Z, I, AverageInterfaceType , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

I Grid connectivity index number, where 1 ≤ I ≤ nconns for the
“cg_conn” functions, and 1 ≤ I ≤ n1to1 for the “cg_1to1”
functions. (Input)

60

13 Grid Connectivity

RotationCenter An array of size phys_dim defining the coordinates of the origin for
defining the rotation angle between the periodic interfaces.
(phys_dim is the number of coordinates required to define a vector
in the field.) (In Fortran, this is an array of Real*4 values.) (Input
for cg_conn_periodic_write, cg_1to1_periodic_write; output
for cg_conn_periodic_read, cg_1to1_periodic_read)

RotationAngle An array of size phys_dim defining the rotation angle from the
current interface to the connecting interface. If rotating about more
than one axis, the rotation is performed first about the x-axis, then
the y-axis, then the z-axis. (In Fortran, this is an array of Real*4
values.) (Input for cg_conn_periodic_write,
cg_1to1_periodic_write; output for cg_conn_periodic_read,
cg_1to1_periodic_read)

Translation An array of size phys_dim defining the translation from the current
interface to the connecting interface. (In Fortran, this is an array of
Real*4 values.) (Input for cg_conn_periodic_write,
cg_1to1_periodic_write; output for cg_conn_periodic_read,
cg_1to1_periodic_read)

AverageInterfaceType The type of averaging to be done. Valid types are CG_Null,
CG_UserDefined, AverageAll, AverageCircumferential,
AverageRadial, AverageI, AverageJ, and AverageK. (Input for
cg_conn_average_write, cg_1to1_average_write; output for
cg_conn_average_read, cg_1to1_average_read)

ier Error status. (Output)

These functions may be used to store special grid connectivity properties. The “cg_conn” func-
tions apply to generalized grid connectivity nodes (i.e., GridConnectivity_t), and the “cg_1to1”
functions apply to 1-to-1 grid connectivity nodes (i.e., GridConnectivity1to1_t).

The “write” functions will create the GridConnectivityProperty_t node if it doesn’t already
exist, then add the appropriate connectivity property. Multiple connectivity properties may be
recorded under the same GridConnectivityProperty_t node.

The “read” functions will return with ier = 2 = CG_NODE_NOT_FOUND if the requested connec-
tivity property, or the GridConnectivityProperty_t node itself, doesn’t exist.

61

Mid-Level Library

13.4 Overset Holes

Node: OversetHoles_t

Functions Modes
ier = cg_hole_write(int fn, int B, int Z, char *holename, - w m

GridLocation_t location, PointSetType_t ptset_type, int nptsets,

cgsize_t npnts, cgsize_t *pnts, int *I);

ier = cg_nholes(int fn, int B, int Z, int *nholes); r - m

ier = cg_hole_info(int fn, int B, int Z, int I, char *holename , r - m

GridLocation_t *location , PointSetType_t *ptset_type ,

int *nptsets , cgsize_t *npnts);

ier = cg_hole_read(int fn, int B, int Z, int I, cgsize_t *pnts); r - m

call cg_hole_write_f(fn, B, Z, holename, location, ptset_type, - w m

nptsets, npnts, pnts, I , ier)

call cg_nholes_f(fn, B, Z, nholes , ier) r - m

call cg_hole_info_f(fn, B, Z, I, holename , location , ptset_type , r - m

nptsets , npnts , ier)

call cg_hole_read_f(fn, B, Z, I, pnts , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

I Overset hole index number, where 1 ≤ I ≤ nholes. (Input for cg_hole_info,
cg_hole_read; output for cg_hole_write)

nholes Number of overset holes in zone Z. (Output)

holename Name of the overset hole. (Input for cg_hole_write; output for cg_hole_info)

location Grid location used in the definition of the point set. The currently admissible
locations are Vertex and CellCenter. (Input for cg_hole_write; output for
cg_hole_info)

ptset_type The extent of the overset hole may be defined using a range of points or cells, or
using a discrete list of all points or cells in the overset hole. If a range of points
or cells is used, ptset_type is set to PointRange. When a discrete list of points
or cells is used, ptset_type equals PointList. (Input for cg_hole_write;
output for cg_hole_info)

nptsets Number of point sets used to define the hole. If ptset_type is PointRange,
several point sets may be used. If ptset_type is PointList, only one point set
is allowed. (Input for cg_hole_write; output for cg_hole_info)

62

13 Grid Connectivity

npnts Number of points (or cells) in the point set. For a ptset_type of PointRange,
npnts is always two. For a ptset_type of PointList, npnts is the number of
points or cells in the PointList. (Input for cg_hole_write; output for
cg_hole_info)

pnts Array of points or cells in the point set. (Input for cg_hole_write; output for
cg_hole_read)

ier Error status. (Output)

63

14 Boundary Conditions

14.1 Boundary Condition Type and Location

Node: BC_t

Functions Modes
ier = cg_boco_write(int fn, int B, int Z, char *boconame, - w m

BCType_t bocotype, PointSetType_t ptset_type, cgsize_t npnts,

cgsize_t *pnts, int *BC);

ier = cg_boco_normal_write(int fn, int B, int Z, int BC, - w m

int *NormalIndex, int NormalListFlag,

DataType_t NormalDataType, void *NormalList);

ier = cg_boco_gridlocation_write(int fn, int B, int Z, int BC, - w m

GridLocation_t location);

ier = cg_nbocos(int fn, int B, int Z, int *nbocos); r - m

ier = cg_boco_info(int fn, int B, int Z, int BC, char *boconame , r - m

BCType_t *bocotype , PointSetType_t *ptset_type , cgsize_t *npnts ,

int *NormalIndex , cgsize_t *NormalListFlag ,

DataType_t *NormalDataType , int *ndataset);

ier = cg_boco_read(int fn, int B, int Z, int BC, cgsize_t *pnts , r - m

void *NormalList);

ier = cg_boco_gridlocation_read(int fn, int B, int Z, int BC, r - m

GridLocation_t *location);

call cg_boco_write_f(fn, B, Z, boconame, bocotype, ptset_type, npnts, - w m

pnts, BC , ier)

call cg_boco_normal_write_f(fn, B, Z, BC, NormalIndex, NormalListFlag, - w m

NormalDataType, NormalList, ier)

call cg_boco_gridlocation_write_f(fn, B, Z, BC, location, ier); - w m

call cg_nbocos_f(fn, B, Z, nbocos , ier) r - m

call cg_boco_info_f(fn, B, Z, BC, boconame , bocotype , ptset_type , r - m

npnts , NormalIndex , NormalListFlag , NormalDataType , ndataset ,

ier)

call cg_boco_read_f(fn, B, Z, BC, pnts , NormalList , ier) r - m

call cg_boco_gridlocation_read_f(fn, B, Z, BC, location , ier); r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

BC Boundary condition index number, where 1 ≤ BC ≤ nbocos. (Input for
cg_boco_normal_write, cg_boco_info, cg_boco_read; output for
cg_boco_write)

65

Mid-Level Library

nbocos Number of boundary conditions in zone Z. (Output)

boconame Name of the boundary condition. (Input for cg_boco_write; output for
cg_boco_info)

bocotype Type of boundary condition defined. See the eligible types for BCType_t in
Section 2.6. Note that if bocotype is FamilySpecified the boundary
condition type is being specified for the family to which the boundary
belongs. The boundary condition type for the family may be read and
written using cg_fambc_read and cg_fambc_write, as described in
Section 16.3. (Input for cg_boco_write; output for cg_boco_info)

ptset_type The extent of the boundary condition may be defined using a range of
points or elements using PointRange, or using a discrete list of all points or
elements at which the boundary condition is applied using PointList.

When the boundary condition is to be applied anywhere other than points,
then GridLocation_t under the BC_t node must be used to indicate this.
The value of GridLocation_t may be read or written by
cg_boco_gridlocation_read and cg_boco_gridlocation_write. As in
previous versions of the library, this may also be done by first using
cg_goto (Section 4) to access the BC_t node, then using
cg_gridlocation_read or cg_gridlocation_write (Section 9.1). (Input
for cg_boco_write; output for cg_boco_info)

npnts Number of points or elements defining the boundary condition region. For
a ptset_type of PointRange, npnts is always two. For a ptset_type of
PointList, npnts is the number of points or elements in the list. (Input
for cg_boco_write; output for cg_boco_info)

pnts Array of point or element indices defining the boundary condition region.
There should be npnts values, each of dimension IndexDimension (i.e., 1
for unstructured grids, and 2 or 3 for structured grids with 2-D or 3-D
elements, respectively). (Input for cg_boco_write; output for
cg_boco_read)

NormalIndex Index vector indicating the computational coordinate direction of the
boundary condition patch normal. (Input for cg_boco_normal_write;
output for cg_boco_info)

NormalListFlag For cg_boco_normal_write, NormalListFlag is a flag indicating if the
normals are defined in NormalList; 1 if they are defined, 0 if they’re not.

For cg_boco_info, if the normals are defined in NormalList,
NormalListFlag is the number of points in the patch times phys_dim, the
number of coordinates required to define a vector in the field. If the
normals are not defined in NormalList, NormalListFlag is 0. (Input for
cg_boco_normal_write; output for cg_boco_info)

NormalDataType Data type used in the definition of the normals. Admissible data types for
the normals are RealSingle and RealDouble. (Input for
cg_boco_normal_write; output for cg_boco_info)

NormalList List of vectors normal to the boundary condition patch pointing into the
interior of the zone. (Input for cg_boco_normal_write; output for
cg_boco_read)

66

14 Boundary Conditions

ndataset Number of boundary condition datasets for the current boundary
condition. (Output)

location Grid location used in the definition of the point set. The currently
admissible locations are Vertex (the default if not given). For 2-D grids,
EdgeCenter is also allowed, and for 3-D grids, the additional values of
FaceCenter, IFaceCenter, JFaceCenter, and KFaceCenter may be used.
(Input for cg_boco_gridlocation_write; output for
cg_boco_gridlocation_read)

ier Error status. (Output)

Notes: (see CPEX 0031)

• The use of ElementList and ElementRange for ptset_type is deprecated and should not be
used in new code. These are still currently accepted, but will be internally replaced with the
appropriate values of PointList/PointRange and GridLocation_t.

• CellCenter for GridLocation_t is also deprecated. If used, the value will be replaced by
EdgeCenter for 2-D grids or FaceCenter for 3-D grids.

14.2 Boundary Condition Datasets

Node: BCDataSet_t

Functions Modes
ier = cg_dataset_write(int fn, int B, int Z, int BC, char *DatasetName, - w m

BCType_t BCType, int *Dset);

ier = cg_dataset_read(int fn, int B, int Z, int BC, int Dset, r - m

char *DatasetName , BCType_t *BCType , int *DirichletFlag ,

int *NeumannFlag);

call cg_dataset_write_f(fn, B, Z, BC, DatasetName, BCType, Dset , ier) - w m

call cg_dataset_read_f(fn, B, Z, BC, Dset, DatasetName , BCType , r - m

DirichletFlag , NeumannFlag , ier)

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

BC Boundary condition index number, where 1 ≤ BC ≤ nbocos. (Input)

Dset Dataset index number, where 1 ≤ Dset ≤ ndataset. (Input for
cg_dataset_read; output for cg_dataset_write)

DatasetName Name of dataset. (Input for cg_dataset_write; output for
cg_dataset_read)

67

Mid-Level Library

BCType Simple boundary condition type for the dataset. The supported types are
listed in the table of “Simple Boundary Condition Types” in the SIDS
manual, but note that FamilySpecified does not apply here. (Input for
cg_dataset_write; output for cg_dataset_read)

DirichletFlag Flag indicating if the dataset contains Dirichlet data. (Output)

NeumannFlag Flag indicating if the dataset contains Neumann data. (Output)

ier Error status. (Output)

The above functions are applicable to BCDataSet_t nodes that are children of BC_t nodes.

For BCDataSet_t nodes that are children of a BC_t node, after accessing a particular BCDataSet_t
node using cg_goto, the Point Set functions described in Section 9.2 may be used to read or write
the locations at which the boundary conditions are to be applied. This is only applicable when the
boundary conditions are to be applied at locations different from those used with cg_boco_write
to define the boundary condition region (e.g., when the region is being defined by specification of
vertices, but the boundary conditions are to be applied at face centers).

When writing point set data to a BCDataSet_t node, in addition to the specification of the
indices using cg_ptset_write, the function cg_gridlocation_write must also be used to specify
the location of the data with respect to the grid (e.g., Vertex or FaceCenter).

Functions Modes
ier = cg_bcdataset_write(char *DatasetName, BCType_t BCType, - w m

BCDataType_t BCDataType);

ier = cg_bcdataset_info(int *ndataset);

ier = cg_bcdataset_read(int Dset, char *DatasetName , BCType_t *BCType , r - m

int *DirichletFlag , int *NeumannFlag);

call cg_bcdataset_write_f(DatasetName, BCType, BCDataType_t BCDataType,
ier)

- w m

call cg_bcdataset_info_f(int *ndataset , ier)

call cg_bcdataset_read_f(Dset, DatasetName , BCType , DirichletFlag , r - m

NeumannFlag , ier)

Input/Output

Dset Dataset index number, where 1 ≤ Dset ≤ ndataset. (Input)

DatasetName Name of dataset. (Input for cg_bcdataset_write; output for
cg_bcdataset_read)

BCType Simple boundary condition type for the dataset. The supported types are
listed in the table of “Simple Boundary Condition Types” in the SIDS
manual, but note that FamilySpecified does not apply here. (Input for
cg_bcdataset_write; output for cg_bcdataset_read)

BCDataType Type of boundary condition in the dataset (i.e., for a BCData_t child node).
Admissible types are Dirichlet and Neumann. (Input)

ndataset Number of BCDataSet nodes under the current FamilyBC_t node. (Output)

68

14 Boundary Conditions

DirichletFlag Flag indicating if the dataset contains Dirichlet data. (Output)

NeumannFlag Flag indicating if the dataset contains Neumann data. (Output)

ier Error status. (Output)

The above functions are applicable to BCDataSet_t nodes that are used to define boundary
conditions for a CFD family, and thus are children of a FamilyBC_t node. The FamilyBC_t node
must first be accessed using cg_goto.

The first time cg_bcdataset_write is called with a particular DatasetName, BCType, and BC-
DataType, a new BCDataSet_t node is created, with a child BCData_t node. Subsequent calls
with the same DatasetName and BCType may be made to add additional BCData_t nodes, of type
BCDataType, to the existing BCDataSet_t node.

14.3 Boundary Condition Data

Node: BCData_t

Functions Modes
ier = cg_bcdata_write(int fn, int B, int Z, int BC, int Dset, - w m

BCDataType_t BCDataType);

call cg_bcdata_write_f(fn, B, Z, BC, Dset, BCDataType, ier) - w m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

BC Boundary condition index number, where 1 ≤ BC ≤ nbocos. (Input)

Dset Dataset index number, where 1 ≤ Dset ≤ ndataset. (Input)

BCDataType Type of boundary condition in the dataset. Admissible boundary condition
types are Dirichlet and Neumann. (Input)

ier Error status. (Output)

To write the boundary condition data itself, after creating the BCData_t node using the function
cg_bcdata_write, use cg_goto to access the node, then cg_array_write to write the data. Note
that when using cg_goto to access a BCData_t node, the node index should be specified as either
Dirichlet or Neumann, depending on the type of boundary condition. See the description of cg_goto
in Section 4 for details.

69

Mid-Level Library

14.4 Special Boundary Condition Properties

Node: BCProperty_t

Functions Modes
ier = cg_bc_wallfunction_write(int fn, int B, int Z, int BC, - w m

WallFunctionType_t WallFunctionType);

ier = cg_bc_area_write(int fn, int B, int Z, int BC, - w m

AreaType_t AreaType, float SurfaceArea, char *RegionName);

ier = cg_bc_wallfunction_read(int fn, int B, int Z, int BC, r - m

WallFunctionType_t *WallFunctionType);

ier = cg_bc_area_read(int fn, int B, int Z, int BC, r - m

AreaType_t *AreaType , float *SurfaceArea , char *RegionName);

call cg_bc_wallfunction_write_f(fn, B, Z, BC, WallFunctionType, ier) - w m

call cg_bc_area_write_f(fn, B, Z, BC, AreaType, SurfaceArea, - w m

RegionName, ier)

call cg_bc_wallfunction_read_f(fn, B, Z, BC, WallFunctionType , ier) r - m

call cg_bc_area_read_f(fn, B, Z, BC, AreaType , SurfaceArea , r - m

RegionName , ier)

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Zone index number, where 1 ≤ Z ≤ nzones. (Input)

BC Boundary condition index number, where 1 ≤ BC ≤ nbocos. (Input)

WallFunctionType The wall function type. Valid types are CG_Null, CG_UserDefined, and
Generic. (Input for cg_bc_wallfunction_write; output for
cg_bc_wallfunction_read)

AreaType The type of area. Valid types are CG_Null, CG_UserDefined,
BleedArea, and CaptureArea. (Input for cg_bc_area_write; output for
cg_bc_area_read)

SurfaceArea The size of the area. (In Fortran, this is a Real*4 value.) (Input for
cg_bc_area_write; output for cg_bc_area_read)

RegionName The name of the region, 32 characters max. (Input for
cg_bc_area_write; output for cg_bc_area_read)

ier Error status. (Output)

The“write” functions will create the BCProperty_t node if it doesn’t already exist, then add the
appropriate boundary condition property. Multiple boundary condition properties may be recorded
under the same BCProperty_t node.

The “read” functions will return with ier = 2 = CG_NODE_NOT_FOUND if the requested boundary
condition property, or the BCProperty_t node itself, doesn’t exist.

70

15 Equation Specification

15.1 Flow Equation Set

Node: FlowEquationSet_t

Functions Modes
ier = cg_equationset_write(int EquationDimension); - w m

ier = cg_equationset_read(int *EquationDimension , r - m

int *GoverningEquationsFlag , int *GasModelFlag ,

int *ViscosityModelFlag , int *ThermalConductModelFlag ,

int *TurbulenceClosureFlag , int *TurbulenceModelFlag);

ier = cg_equationset_chemistry_read(int *ThermalRelaxationFlag , r - m

int *ChemicalKineticsFlag);

ier = cg_equationset_elecmagn_read(int *ElecFldModelFlag , r - m

int *MagnFldModelFlag , ConductivityModelFlag);

call cg_equationset_write_f(EquationDimension, ier) - w m

call cg_equationset_read_f(EquationDimension , r - m

GoverningEquationsFlag , GasModelFlag , ViscosityModelFlag ,

ThermalConductModelFlag , TurbulenceClosureFlag ,

TurbulenceModelFlag , ier)

call cg_equationset_chemistry_read_f(ThermalRelaxationFlag , r - m

ChemicalKineticsFlag , ier)

call cg_equationset_elecmagn_read_f(ElecFldModelFlag , r - m

MagnFldModelFlag , ConductivityModelFlag , ier)

Input/Output

EquationDimension Dimensionality of the governing equations; it is the number of
spatial variables describing the flow. (Input for
cg_equationset_write; output for cg_equationset_info)

GoverningEquationsFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of the governing equations; 0 if it doesn’t,
1 if it does. (Output)

GasModelFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of a gas model; 0 if it doesn’t, 1 if it does.
(Output)

ViscosityModelFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of a viscosity model; 0 if it doesn’t, 1 if it
does. (Output)

ThermalConductModelFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of a thermal conductivity model; 0 if it
doesn’t, 1 if it does. (Output)

71

Mid-Level Library

TurbulenceClosureFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of the turbulence closure; 0 if it doesn’t, 1
if it does. (Output)

TurbulenceModelFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of a turbulence model; 0 if it doesn’t, 1 if
it does. (Output)

ThermalRelaxationFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of thae thermal relaxation model; 0 if it
doesn’t, 1 if it does. (Output)

ChemicalKineticsFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of a chemical kinetics model; 0 if it
doesn’t, 1 if it does. (Output)

ElecFldModelFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of an electric field model for
electromagnetic flows; 0 if it doesn’t, 1 if it does. (Output)

MagnFldModelFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of a magnetic field model for
electromagnetic flows; 0 if it doesn’t, 1 if it does. (Output)

ConductivityModelFlag Flag indicating whether or not this FlowEquationSet_t node
includes the definition of a conductivity model for
electromagnetic flows; 0 if it doesn’t, 1 if it does. (Output)

ier Error status. (Output)

15.2 Governing Equations

Node: GoverningEquations_t

Functions Modes
ier = cg_governing_write(GoverningEquationsType_t Equationstype); - w m

ier = cg_governing_read(GoverningEquationsType_t *EquationsType); r - m

ier = cg_diffusion_write(int *diffusion_model); - w m

ier = cg_diffusion_read(int *diffusion_model); r - m

call cg_governing_write_f(EquationsType, ier) - w m

call cg_governing_read_f(EquationsType , ier) r - m

call cg_diffusion_write_f(diffusion_model, ier) - w m

call cg_diffusion_read_f(diffusion_model , ier) r - m

Input/Output

EquationsType Type of governing equations. The admissible types are CG_Null,
CG_UserDefined, FullPotential, Euler, NSLaminar, NSTurbulent,
NSLaminarIncompressible, and NSTurbulentIncompressible. (Input
for cg_governing_write; output for cg_governing_read)

72

15 Equation Specification

diffusion_model Flags defining which diffusion terms are included in the governing
equations. This is only applicable to the Navier-Stokes equations with
structured grids. See the discussion of GoverningEquations_t in the
SIDS manual for details. (Input for cg_diffusion_write; output for
cg_diffusion_read)

ier Error status. (Output)

15.3 Auxiliary Models

Nodes: GasModel_t, ViscosityModel_t, ThermalConductivityModel_t, TurbulenceClosure_t,
TurbulenceModel_t, ThermalRelaxationModel_t, ChemicalKineticsModel_t, EMElectricField-
Model_t, EMMagneticFieldModel_t, EMConductivityModel_t

Functions Modes
ier = cg_model_write(char *ModelLabel, ModelType_t ModelType); - w m

ier = cg_model_read(char *ModelLabel, ModelType_t *ModelType); r - m

call cg_model_write_f(ModelLabel, ModelType, ier) - w m

call cg_model_read_f(ModelLabel, ModelType , ier) r - m

Input/Output

ModelLabel The CGNS label for the model being defined. The models supported by CGNS
are:

• GasModel_t
• ViscosityModel_t
• ThermalConductivityModel_t
• TurbulenceClosure_t
• TurbulenceModel_t
• ThermalRelaxationModel_t
• ChemicalKineticsModel_t
• EMElectricFieldModel_t
• EMMagneticFieldModel_t
• EMConductivityModel_t

(Input)

ModelType One of the model types (listed below) allowed for the ModelLabel selected.
(Input for cg_model_write; output for cg_model_read)

ier Error status. (Output)

The types allowed for the various models are:

GasModel_t CG_Null, CG_UserDefined, Ideal, VanderWaals,
CaloricallyPerfect, ThermallyPerfect,
ConstantDensity, RedlichKwong

ViscosityModel_t CG_Null, CG_UserDefined, Constant, PowerLaw,
SutherlandLaw

73

Mid-Level Library

ThermalConductivityModel_t CG_Null, CG_UserDefined, PowerLaw, SutherlandLaw,
ConstantPrandtl

TurbulenceModel_t CG_Null, CG_UserDefined, Algebraic_BaldwinLomax,
Algebraic_CebeciSmith, HalfEquation_JohnsonKing,
OneEquation_BaldwinBarth,
OneEquation_SpalartAllmaras,
TwoEquation_JonesLaunder, TwoEquation_MenterSST,
TwoEquation_Wilcox

TurbulenceClosure_t CG_Null, CG_UserDefined, EddyViscosity,
ReynoldsStress, ReynoldsStressAlgebraic

ThermalRelaxationModel_t CG_Null, CG_UserDefined, Frozen, ThermalEquilib,
ThermalNonequilib

ChemicalKineticsModel_t CG_Null, CG_UserDefined, Frozen,
ChemicalEquilibCurveFit,
ChemicalEquilibMinimization, ChemicalNonequilib

EMElectricFieldModel_t CG_Null, CG_UserDefined, Constant, Frozen,
Interpolated, Voltage

EMMagneticFieldModel_t CG_Null, CG_UserDefined, Constant, Frozen,
Interpolated

EMConductivityModel_t CG_Null, CG_UserDefined, Constant, Frozen,
Equilibrium_LinRessler, Chemistry_LinRessler

74

16 Families

16.1 Family Definition

Node: Family_t

Functions Modes
ier = cg_family_write(int fn, int B, char *FamilyName, int *Fam); - w m

ier = cg_nfamilies(int fn, int B, int *nfamilies); r - m

ier = cg_family_read(int fn, int B, int Fam, char *FamilyName , r - m

int *nFamBC , int *nGeo);

call cg_family_write_f(fn, B, FamilyName, Fam , ier) - w m

call cg_nfamilies_f(fn, B, nfamilies , ier) r - m

call cg_family_read_f(fn, B, Fam, FamilyName , nFamBC , nGeo , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

nfamilies Number of families in base B. (Output)

Fam Family index number, where 1 ≤ Fam ≤ nfamilies. (Input for
cg_family_read; output for cg_family_write)

FamilyName Name of the family. (Input for cg_family_write; output for cg_family_read)

nFamBC Number of boundary conditions for this family. This should be either 0 or 1.
(Output)

nGeo Number of geometry references for this family. (Output)

ier Error status. (Output)

75

Mid-Level Library

16.2 Geometry Reference

Node: GeometryReference_t

Functions Modes
ier = cg_geo_write(int fn, int B, int Fam, char *GeoName, - w m

char *FileName, char *CADSystem, int *G);

ier = cg_geo_read(int fn, int B, int Fam, int G, char *GeoName , r - m

char **FileName , char *CADSystem , int *nparts);

ier = cg_part_write(int fn, int B, int Fam, int G, char *PartName, - w m

int *P);

ier = cg_part_read(int fn, int B, int Fam, int G, int P, r - m

char *PartName);

call cg_geo_write_f(fn, B, Fam, GeoName, FileName, CADSystem, G , ier) - w m

call cg_geo_read_f(fn, B, Fam, G, GeoName , FileName , CADSystem , r - m

nparts , ier)

call cg_part_write_f(fn, B, Fam, G, PartName, P , ier) - w m

call cg_part_read_f(fn, B, Fam, G, P, PartName , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Fam Family index number, where 1 ≤ Fam ≤ nfamilies. (Input)

G Geometry reference index number, where 1 ≤ G ≤ nGeo. (Input for cg_geo_read,
cg_part_write, cg_part_read; output for cg_geo_write)

P Geometry entity index number, where 1 ≤ P ≤ nparts. (Input for
cg_part_read; output for cg_part_write)

GeoName Name of GeometryReference_t node. (Input for cg_geo_write; output for
cg_geo_read)

FileName Name of geometry file. (Input for cg_geo_write; output for cg_geo_read)

CADSystem Geometry format. (Input for cg_geo_write; output for cg_geo_read)

nparts Number of geometry entities. (Output)

PartName Name of a geometry entity in the file FileName. (Input for cg_part_write;
output for cg_part_read)

ier Error status. (Output)

Note that with cg_geo_read the memory for the filename character string, FileName, will be
allocated by the Mid-Level Library. The application code is responsible for releasing this memory
when it is no longer needed by calling cg_free(FileName), described in Section 10.6.

76

16 Families

16.3 Family Boundary Condition

Node: FamilyBC_t

Functions Modes
ier = cg_fambc_write(int fn, int B, int Fam, char *FamBCName, - w m

BCType_t BCType, int *BC);

ier = cg_fambc_read(int fn, int B, int Fam, int BC, char *FamBCName , r - m

BCType_t *BCType);

call cg_fambc_write_f(fn, B, Fam, FamBCName, BCType, BC , ier) - w m

call cg_fambc_read_f(fn, B, Fam, BC, FamBCName , BCType , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Fam Family index number, where 1 ≤ Fam ≤ nfamilies. (Input)

BC Family boundary condition index number. This must be equal to 1. (Input for
cg_fambc_read; output for cg_fambc_write)

FamBCName Name of the FamilyBC_t node. (Input for cg_fambc_write; output for
cg_fambc_read)

BCType Boundary condition type for the family. See the eligible types for BCType_t in
Section 2.6. (Input for cg_fambc_write; output for cg_fambc_read)

ier Error status. (Output)

16.4 Family Name

Node: FamilyName_t

Functions Modes
ier = cg_famname_write(char *FamilyName); - w m

ier = cg_famname_read(char *FamilyName); r - m

call cg_famname_write_f(FamilyName, ier) - w m

call cg_famname_read_f(FamilyName , ier) r - m

Input/Output

FamilyName Family name. (Input for cg_famname_write; output for cg_famname_read)

ier Error status. (Output)

77

17 Time-Dependent Data

17.1 Base Iterative Data

Node: BaseIterativeData_t

Functions Modes
ier = cg_biter_write(int fn, int B, char *BaseIterName, int Nsteps); - w m

ier = cg_biter_read(int fn, int B, char *BaseIterName , int *Nsteps); r - m

call cg_biter_write_f(fn, B, BaseIterName, Nsteps, ier) - w m

call cg_biter_read_f(fn, B, BaseIterName , Nsteps , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

BaseIterName Name of the BaseIterativeData_t node. (Input for cg_biter_write;
output for cg_biter_read)

Nsteps Number of time steps or iterations. (Input for cg_biter_write; output for
cg_biter_read)

ier Error status. (Output)

17.2 Zone Iterative Data

Node: ZoneIterativeData_t

Functions Modes
ier = cg_ziter_write(int fn, int B, int Z, char *ZoneIterName); - w m

ier = cg_ziter_read(int fn, int B, int Z, char *ZoneIterName); r - m

call cg_ziter_write_f(fn, B, Z, ZoneIterName, ier) - w m

call cg_ziter_read_f(fn, B, Z, ZoneIterName , ier) r - m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Family index number, where 1 ≤ Z ≤ nzones. (Input)

ZoneIterName Name of the ZoneIterativeData_t node. (Input for cg_ziter_write;
output for cg_ziter_read)

ier Error status. (Output)

79

Mid-Level Library

17.3 Rigid Grid Motion

Node: RigidGridMotion_t

Functions Modes
ier = cg_rigid_motion_write(int fn, int B, int Z, - w m

char *RigidGridMotionName,

RigidGridMotionType_t RigidGridMotionType, int *R);

ier = cg_n_rigid_motions(int fn, int B, int Z, int *n_rigid_motions); r - m

ier = cg_rigid_motion_read(int fn, int B, int Z, int R, r - m

char *RigidGridMotionName ,

RigidGridMotionType_t RigidGridMotionType);

call cg_rigid_motion_write_f(fn, B, Z, RigidGridMotionName, - w m

RigidGridMotionType, R , ier)

call cg_n_rigid_motions_f(fn, B, Z, n_rigid_motions , ier) r - m

call cg_rigid_motion_read_f(fn, B, Z, R, RigidGridMotionName , r - m

RigidGridMotionType , ier)

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Family index number, where 1 ≤ Z ≤ nzones. (Input)

RigidGridMotionName Name of the RigidGridMotion_t node. (Input for
cg_rigid_motion_write; output for cg_rigid_motion_read)

RigidGridMotionType Type of rigid grid motion. The admissible types are CG_Null,
CG_UserDefined, ConstantRate, and VariableRate. (Input for
cg_rigid_motion_write; output for cg_rigid_motion_read)

n_rigid_motions Number of RigidGridMotion_t nodes under zone Z. (Output)

R Rigid rotation index number, where 1 ≤ R ≤ n_rigid_motions.
(Input for cg_rigid_motion_read; output for
cg_rigid_motion_write)

ier Error status. (Output)

80

17 Time-Dependent Data

17.4 Arbitrary Grid Motion

Node: ArbitraryGridMotion_t

Functions Modes
ier = cg_arbitrary_motion_write(int fn, int B, int Z, - w m

char *ArbitraryGridMotionName,

ArbitraryGridMotionType_t ArbitraryGridMotionType, int *A);

ier = cg_n_arbitrary_motions(int fn, int B, int Z, r - m

int *n_arbitrary_motions);

ier = cg_arbitrary_motion_read(int fn, int B, int Z, int A, r - m

char *ArbitraryGridMotionName ,

ArbitraryGridMotionType_t ArbitraryGridMotionType);

call cg_arbitrary_motion_write_f(fn, B, Z, ArbitraryGridMotionName, - w m

ArbitraryGridMotionType, A , ier)

call cg_n_arbitrary_motions_f(fn, B, Z, n_arbitrary_motions , ier) r - m

call cg_arbitrary_motion_read_f(fn, B, Z, A, ArbitraryGridMotionName , r - m

ArbitraryGridMotionType , ier)

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Family index number, where 1 ≤ Z ≤ nzones. (Input)

ArbitraryGridMotionName Name of the ArbitraryGridMotion_t node. (Input for
cg_arbitrary_motion_write; output for
cg_arbitrary_motion_read)

ArbitraryGridMotionType Type of arbitrary grid motion. The admissible types are
CG_Null, CG_UserDefined, NonDeformingGrid, and
DeformingGrid. (Input for cg_arbitrary_motion_write;
output for cg_arbitrary_motion_read)

n_arbitrary_motions Number of ArbitraryGridMotion_t nodes under zone Z.
(Output)

A Arbitrary grid motion index number, where
1 ≤ A ≤ n_arbitrary_motions. (Input for
cg_arbitrary_motion_read; output for
cg_arbitrary_motion_write)

ier Error status. (Output)

81

Mid-Level Library

17.5 Zone Grid Connectivity

Node: ZoneGridConnectivity_t

Functions Modes
ier = cg_nzconns(int fn, int B, int Z, int *nzconns); r - m

ier = cg_zconn_read(int fn, int B, int Z, int ZC, char *zcname); r - m

ier = cg_zconn_write(int fn, int B, int Z, const char *zcname, - w m

int *ZC);

ier = cg_zconn_set(int fn, int B, int Z, int ZC); r w m

ier = cg_zconn_get(int fn, int B, int Z, int *ZC); r w m

call cg_nzconns_f(fn, B, Z, nzconns , ier) r - m

call cg_zconn_read_f(fn, B, Z, ZC, zcname , ier) r - m

call cg_zconn_write_f(fn, B, Z, zcname, ZC , ier) - w m

call cg_zconn_set_f(fn, B, Z, ZC, ier) r w m

call cg_zconn_get_f(fn, B, Z, ZC , ier) r w m

Input/Output

fn CGNS file index number. (Input)

B Base index number, where 1 ≤ B ≤ nbases. (Input)

Z Family index number, where 1 ≤ Z ≤ nzones. (Input)

ZC Zone grid connectivity index number, where 1 ≤ ZC ≤ nzconns. (Input for
cg_zconn_read and cg_zconn_set; output for cg_zconn_write and
cg_zconn_get)

nzconns Number of ZoneGridConnectivity_t nodes under Zone Z. (Output)

zcname Name of the ZoneGridConnectivity_t node. (Input for cg_zconn_write; output
for cg_zconn_read)

ier Error status. (Output)

This allows for the specification of multiple ZoneGridConnectivity_t nodes. If these functions
are not used, or cg_zconn_write is called once with a zcname of ZoneGridConnectivity, then
there will be no differences from previous versions of the CGNS library. However, with multiple
ZoneGridConnectivity_t nodes, there is an implicit current ZoneGridConnectivity_t node on
which subsequent grid connectivity functions will operate, i.e. cg_conn_read/write (Section 13.2)
or cg_1to1_read/write (Section 13.1).

The functions cg_zconn_read and cg_zconn_write will implicity set the current ZoneGrid-
Connectivity_t node, while cg_zconn_set explicitly sets it. The functions cg_nzconns and
cg_zconn_get do not change it.

The time-dependent changes to the connectivities may then be recorded in the ZoneInterative-
Data_t (Section 17.2) node as an array of ZoneGridConnectivityPointers.

82

18 Links

Functions Modes
ier = cg_link_write(char *nodename, char *filename, - w m

char *name_in_file);

ier = cg_is_link(int *path_length); r - m

ier = cg_link_read(char **filename , char **link_path); r - m

call cg_link_write_f(nodename, filename, name_in_file, ier) - w m

call cg_is_link_f(path_length , ier) r - m

call cg_link_read_f(filename , link_path , ier) r - m

Input/Output

nodename Name of the link node to create, e.g., GridCoordinates. (Input)

filename Name of the linked file, or empty string if the link is within the same file.
(Input for cg_link_write; output for cg_link_read)

name_in_file Path name of the node which the link points to. This can be a simple or a
compound name, e.g., Base/Zone 1/GridCoordinates. (Input)

path_length Length of the path name of the linked node. The value 0 is returned if the
node is not a link. (Output)

link_path Path name of the node which the link points to. (Output)

ier Error status. (Output)

Use cg_goto(_f), described in Section 4, to position to a location in the file prior to calling
these routines.

When using cg_link_write, the node being linked to does not have to exist when the link is
created. However, when the link is used, an error will occur if the linked-to node does not exist.

Only nodes that support child nodes will support links.

It is assumed that the CGNS version for the file containing the link, as determined by the
CGNSLibraryVersion_t node, is also applicable to filename, the file containing the linked node.

Memory is allocated by the library for the return values of the C function cg_link_read. This
memory should be freed by the user when no longer needed by calling cg_free(filename) and
cg_free(link_path), described in Section 10.6.

83

	Introduction
	General Remarks
	Acquiring the Software and Documentation
	Organization of This Manual
	Language
	Character Strings
	Error Status
	Typedefs
	Character Names For Typedefs
	64-bit C Portability and Issues
	64-bit Fortran Portability and Issues

	File Operations
	Opening and Closing a CGNS File
	Configuring CGNS Internals

	Navigating a CGNS File
	Accessing a Node
	Deleting a Node

	Error Handling
	Structural Nodes
	CGNS Base Information
	Zone Information
	Simulation Type

	Descriptors
	Descriptive Text
	Ordinal Value

	Physical Data
	Data Arrays
	Data Class
	Data Conversion Factors
	Dimensional Units
	Dimensional Exponents

	Location and Position
	Grid Location
	Point Sets
	Rind Layers

	Auxiliary Data
	Reference State
	Gravity
	Convergence History
	Integral Data
	User-Defined Data
	Freeing Memory

	Grid Specification
	Zone Grid Coordinates
	Element Connectivity
	Axisymmetry
	Rotating Coordinates

	Solution Data
	Flow Solution
	Flow Solution Data
	Discrete Data
	Zone Subregions

	Grid Connectivity
	One-to-One Connectivity
	Generalized Connectivity
	Special Grid Connectivity Properties
	Overset Holes

	Boundary Conditions
	Boundary Condition Type and Location
	Boundary Condition Datasets
	Boundary Condition Data
	Special Boundary Condition Properties

	Equation Specification
	Flow Equation Set
	Governing Equations
	Auxiliary Models

	Families
	Family Definition
	Geometry Reference
	Family Boundary Condition
	Family Name

	Time-Dependent Data
	Base Iterative Data
	Zone Iterative Data
	Rigid Grid Motion
	Arbitrary Grid Motion
	Zone Grid Connectivity

	Links

